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Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the
interplanar exchange constant in antiferromagnetic two-layer systems, such a€¥Bg_,,. We present a
theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and
magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix
elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the
interlayer exchange coupling, for the Raman spectra iA;4 and B4 scattering geometries both in the
nonresonant regimévhen the Loudon-Fleury model is valigind at resonance. We show that within the
Loudon-Fleury approximation, a nonzefggives rise to a finite signal iA,4 scattering geometry. Both in this
approximation and at resonance the intensity inAhgchannel has a peak aalltransferred frequency equal
to twice the gap in the spin-wave spectrum. We compare our results with experiments j#C¥Y{x; , and
Sr,CuO,Cl, compounds and argue that the large valuelpfsuggested in a number of recent studies is
incompatible with Raman experiments Ay, geometry[S0163-182606)06126-1

[. INTRODUCTION understand the Raman spectra in different scattering geom-
etries. In By, geometry[e=(X+Y)/2,&=(X—y)/y2,3

Since the discovery of higfi; superconductivity,a lot of where g ; are polarization unit vectors of the incident and
work has been done in an attempt to understand the pairingcattered photorjsthe dominant feature of the magnetic Ra-
mechanism. Most of the existing theories consider bosonman intensity profile is a peak at about 3000 chmwhich is
mediated pairing between electrons in the same Cpl@ne,  attributed to a two-magnon scattering proc¥she two-
but there also exist arguments in favor of the pairing betweemagnon peak has been observed in all parent fiigghem-
electrons in adjacent CuQOplanes’ These arguments are pounds. Besides, the experiments also found a strong Raman
mostly applied to YBaCu3Og4,y (YBCO) compounds in signal in theA,, geometry[e =e;= (X+V)/2].*° The Aqq
which the unit cell contains pairs of Cy(planes separated signal has a maximum at about the same frequency as in
by a charge reservoir. A strong magnetic coupling betweeiB,, geometry, but the width of the peak is larger and its
the planes of a bilayer was also sugget®ds a possible intensity is about a quarter as strong.
source for an experimentally observed strong downturn A traditional framework for the understanding of Raman
renormalization of the low temperature Pauli susceptibilityexperiments is the Loudon-Fleury thetfwvhich describes
of holes in underdoped YBCO compoundspin-gap” phe-  the interaction of light with only spin degrees of freedom.
nomenon as well as for the maximum in the spin-lattice This theory explains a peak B,y geometry but predicts that
relaxation rate at temperatures well abdye® there should be no scattering i,y geometry. Recently,

An essential input parameter for these theories is thdowever, it was fountf that the Loudon-Fleury approach
value of the interplane hopping amplitude or the Cu-Cu suhas to be modified because Raman experiments are mostly
perexchange interaction between the two Gufanes. In  performed near the resonant regime where photon frequen-
this paper, we will argue that the Raman scattering expericies are close to the charge transfer gap of the insulating
ments in two-layer compounds allow an estimate for thecompounds, and one can by no means neglect electronic de-
value of the interlayer exchange coupling. grees of freedom. In this regime, the diagrams which are

The Raman scattering in single-layer parent Higheom-  neglected in the Loudon-Fleury theory, and which contribute
pounds has been intensively studied over the last fewo bothA,q andB4 scattering, are actually more important
years’ 12 A large number of studies has been performed tathan the diagrams included in the Loudon-Fleury theory.
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In this paper, we will study magnetic Raman scattering in

two-layer antiferromagnetic insulators. We will show that in Jl

the presence of the interlayer exchange couplingthe Ra-

man scattering profile in thé,, scattering geometry ac-

quires qualitatively new features. In particular, a nonzero

J, gives rise to a nonzero Raman intensity in thg, scat- J2

tering geometry already in the Loudon-Fleury approxima-

tion. Moreover, we will see that within the Loudon-Fleury

theory, there is a very strong enhancemengf intensity at

small transferred frequencieso;— w;= dw™~4(J;J,)*?,

wherew; andw; are the frequencies of the incoming and the

scattered photon, respectively, and is the intralayer ex- FIG. 1. The system under consideration is a two-layer antifer-

.change coupling. At the frequency shiftu™ the intensity romagnet with intralayer exchange couplidg=4t?/U and inter-
in the A;4 channel actually turns out to Harger than the  |ayer exchange coupling,=4t'2/U.

intensity in theB, 4 channel, which, as we recall, is nonzero
already in the absence d%. In the resonant regime, when
the incident photon frequency becomes comparable to the
single-particle excitation gap of the insulator, there exist®of experimental data for single-layer £uO,Cl, and
substantialA, scattering already for a single layer. Never- double-layer YBaCu3Og ;.

theless, we will argue that even in this situation, in a two-
layer system, there is a measurable change of the Raman
intensity near the frequency shifiw™s We will also con-
sider the scattering iB,, geometry and will show that in
this geometry the effect af, is much weaker than foh,,

II. DERIVATION OF THE LOUDON-FLEURY
HAMILTONIAN FOR THE NONRESONANT CASE

scattering In this section we de_rive th_e effective Loudon-FIeury
9 _ model for Raman scattering using a momentum space dia-

In principle, _the presence of th_e hew features In/@h@_ grammatic formalism. This formalism has recently been ap-

Raman scattering allows one to find the value of the interyjiaq 1o derive the Loudon-Fleury Hamiltonian for a single-

layer coupling. In reality, however, in YBCO, the frequency |ayer systent? Technically, the calculations for two-layer

shift 50" is in the region where the dominant contribution systems are more involved as one has to double the number

to the Raman intensity comes from phonon rather than twopf fermionic operators. Conceptually, however, our approach

magnon scattering. However, we will argue that there args exactly the same as in Ref. 12, and we therefore refrain

still several features of the Raman profile in YBCO which from discussing the calculational steps in full length.

are absent in the single-layer compound,&uO,Cl, and The starting point of our calculations is the simplest one-

which allow one to find an estimate fdp. We found from  band Hubbard Hamiltonian for a two-layer system at half-

our analysis tha8, is likely to be about 0.1;. More rigor-  filling on a square lattice given by

ously, we can place the upper boundary fdy as

J,~0.25]). Neutron scattering data for the spin wave veloc-

ity cq, at half-filling'’ yield J;~120 meV. Ascg, is only _ T t o

weakly dependent od, for small J,/J;, this implies that : t(izj) (GioCiot oot HC)

the probable value id,~12 meV, and the upper boundary

for J, is 30 meV. This is consistent with the estimate 5 meV ) "

<J,<20 meV forJ, extracted from the analysis of NMR —t EI (Ci,adi,o”LH-C-)J“U% NiaMial, (D)

datd® on the double-layer material JBa,Cu,0;s,*° but '

substantially smaller thad,~0.55]; inferred from infrared

transmission and reflection measurem&asd also substan- Where thec andd operators represent the electrons of layers

tially smaller than the theoretical estimalg=56 meV by 1 and 2, respectively,@=1,2, nj,=¢/ ,Ci,.Niz,

Barriquand and SawatzKy. =dﬁodiyg, andt’ is the hopping amplitude between the
The paper is organized as follows. We start in Sec. Il withplanes for which we assunté<t (see Fig. 1L We will also

the Hubbard model at half-filling which has long-range anti-assume that/U<1 and thus perform our calculations only

ferromagnetic order in its ground state, and derive in a diato leading order irt/U. This largetJ one-band model with

grammatic formalism the effective Loudon-Fleury model for only nearest-neighbor in-plane hopping is indeed a simplifi-

Raman scattering iA;, andB;, geometries in the nonreso- cation, but it was argued in Ref. 12 that this model already

nant regime(i.e., assuming that the photon frequencies arecontains the relevant physics for the analysis of Raman scat-

smaller than the Mott-Hubbard gapn Sec. Ill, we use this tering in YBCO compounds. Here we follow this reasoning

model to compute the Raman intensity in thg, andB;,  and assume that the model of Ed) is valid.

channels first without a magnon-magnon interaction, and The mechanism of two-magnon Raman scattering is

then by including multiple scattering between magnons. Irstraightforward and has been discussed a number of times in

Sec. IV, we will discuss the resonant regime. Finally, in Secthe literature?” The incoming photon with frequenay, cre-

V, we summarize our results and discuss them in the contextes a virtual particle-hole pair, which then in turn emits two
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magnons with momentq and —q before it annihilates into j, is the current operator whose momentum can be safely set
an outgoing photon with frequency;. For the diagram- to zero since the velocity of light is several orders of mag-
matic calculation of the required matrix element for Ramannitude larger than the Fermi velocity. To lowest order in
scattering we thus need to compute two types of vertices: thgU the components of the current operator are given by
vertices for the interaction between the electrons and the
electromagnetic vector potential of the photons and the ver-
tices for the interaction between the electrons and the mag-
nons. ey

The procedure to derive the coupling of light to the elec- j§:0=2 K
trons was previously described by Shastry and Shrafhan: ko IKa
The photons introduce a slowly varying vector potential
A(r,t) in the presence of which the hopping term in the
kinetic energy of the electrons acquires a phase _
[i(e/fic) fIA(l,t) - dI]. The Hubbard Hamiltonian is then ex- where e, = —4ty,. We see that to lowest order iU the

. : . interaction with light only leads to excitations of quasiparti-

panded to leading orders iA. One further introduces the les bet th | d duction bands of h bai
staggered magnetization as the spin-density-WSB\) or- cles between the valence and conduction bands of each pair.

der parameter and transforms to new fermionic operatorgxCltatlons within each _band are of higher Orde“t_“ and
which diagonalize the Hartree-Fock  factorized &' therefore neglected in our present strong-coupling theory.

Hamiltonian? To derive the interaction vertex between fer- It is noteworthy that the fermionic current rewritten in terms
mions and magnons, one has to compute the transverse sgth quasiparticles which decouple the Hamiltonian into two
susceptibilities with and without momentum transfer Separate termfi.e., « and 8 operators introduced ifA3)]
Q=(m,), and construct the interaction Hamiltonian which contains only densities of these fermionic quasiparticles. As
reproducesall dynamic spin susceptibilities. This procedure @ result, there are no terms jg, which would correspond

is unique though rather involved for a two-layer system. Wel0 €xcitations between the valence ba?d of one pair and the
will skip the details and present only our final resyisme  conduction band of the other pae.g.,ay ,fy o)

[a] ,bro+el fotH.cl, (5)

of the useful formulas are collected in Appendix. A We now present the result for the Hamiltonian which de-
In terms of the new SDW quasiparticle operators, thescribes the magnon-fermion interaction. A systematic way to
Hubbard Hamiltonian takes the form derive this Hamiltonian is to extend the Hubbard model to a

large number oin=2S orbitals at a given site, and use a
1/S expansiort®?’ The resulting spin-wave spectrum is that
for a spinS antiferromagnet. In this section, we will consider

—NV jE+(al _pt
H—z_ {Ex (A, 08,0 = by oDk, o) only noninteracting spin waves; i.e., we will keep only the
_ leading linear term in the % expansion. To simplify the
+E (e ex o=l fi o)l 2 : i
k &k, e k0™ Tk,o ko)1 notation we will, however, not keep the overall factorsSof
in the formulas and thus present the resultsfer2S=1.
where The spin-wave excitation spectrum of the two-layer anti-

ferromagnet consists of one doubly degenerate branch with
the dispersioff
_ Coky+ coky

By =V(€)*+A% e =—atytt’, n=—pg—,
3)

Q1(q) =233(1— v) (1+ v+ 35/23;) (6)

and we set the lattice constaag=1. Here and below, the

prime in the summation sign indicates that the summation is

restricted to the magnetic Brillouin zone, i.e., to momentafor momentaq in the first Brillouin zone. The dynamic trans-
wherer,>0. For a two-layer system we obtain two pairs of yerse spin susceptibility has poles &=0,(q) and
conduction(described by the ande) and valencelf and (0 =0,(q+Q). For a single-layer antiferromagnet,
f) operators. The energy dispersions for each pair are shifted, (q) =0 ,(q+ Q), and the two poles are indistinguishable.
by Q=(m,m). The direct gap & between the bands is de- For two-layer systems, howevef,;(q) and Q;(q+Q) are
termined by a self-consistency equation for the staggeregifferent, and it is convenient to introduce two types of mag-
r_na_gnetization and reduces ta 2 U in the strong-coupling non operatorsm, and n, with the dispersions2,(q) and
mit. - - 25(0)=24(q+ Q).

The interaction between the fermionic current and the The e|ectr0n-magnon interaction Hamiltonian can be ob-
vector potential of ||ght, which is relevant for two-magnon tained in the same way as for a Sing|e_|ayer
scattering at transferred photon frequencies small compareghtiferromagnet? It is uniquely defined by the requirement
to the Mott-Hubbard gap, has the form that it should reproduce the forms of the dynamic spin sus-

ceptibilities, both with zero momentum transfer and with
momentum transfe®. The susceptibilities are presented in
H.=— iz A (4) Appendix B, and the interaction Hamiltonian which repro-
i T o4 JaA-q d
q uces them has the form
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Hetmag= 2" qE [ 408K — oM™ (T — 1 (K,0Q) +€f4q s&k — oM’ T —_(K,q)

D o0 oM gL (K@) + Tl ofi oM gL (K@) + 8l q o8k - 0N ¥ -+ (KO
+ el q ok - o q¥ - (K + flyqobk - o i - (KO +0] g fi o ¥y (k)
(@) 140Dk~ Bl g ofk )M @ (K,Q) + (Bl 4 p8k o+ Thiq o€k —o) ML (@1 (K,0)
(@) 1.0 Tk — o €hq .ok - )N E (KA + (Fliq Bk — o+ Dlg o8k — )N (E 4 (K,Q)

+H.c]. (7)

The vertex functions in Eq7) are 2A
o Mf?lVZ): - 8t2W{Z)\lz(q)ﬂlz(q)(eixefx—i_eiyefy)
O (k) =V2AL g = 7], E(ka)=V2A[£= &),
I[)\%,Z(Q)"':’-’*iz(cl)](ei><ef><CO$]x+eiyefycosqy)}'
1 . o N (10
Iy -(ka)= E[_ 77q(£l2+q+ € )+ 77q(6IZ+q_ €)1,
The indices 1 and 2 indicate whether the final state contains
two magnons of typen, or of typen,, respectively() is a
. L . frequency equal taw; or w¢ which are indistinguishable to
Uig vo(ka)= E[ﬂq(ﬂaﬁ €i)+ 7q(€rq— €)1 leading order int/U, ande ; are the polarization vectors of
the incident and scattered photons. The coefficigntg(q)
and\; y(q) are defined as

1 * TV £ (. * ¥
\I’—Jr,——(kvq):2_\/5[_§q(5k_+q+ek)+§q(5k+q_€k )]1 \/E,le(Q):?q'i“ g \/57\1((]):7(4_ g

Vs @) =éqt&q, V2N =&~ & (1D)

1 o — _
Vo (kA= —=[&g(€icrqt €+ Eql kg — €)1,
B 2s 1 kra Tk @l Tk Simple algebra yields the relations

)
1/2
where, e.g., the upper signs are for , and the lower ones Mlz(Q)ZP(M+ ” ,
forT__, and ’ 21204 49)
_ 14 114 4),v,*=d, [1( 43+ 3, 172
q \/E 1+ Vq+J2/2J1 q \/E 1_Vq ! 1Vq— 2 1, q

Comparing this result with the one in Ref. 12, we observe
1 1+ v, e q 1— v+ 3,023, 14 that the form of the Raman matrix element for single- and
fqzﬁ(m) gq:E(H-—vq) double-layer systems is exactly the same. Information about

the coupling between the layers is only contained in the co-
© herence factorg:; ,(q) and\j (). This is a direct conse-

As for the case of a single-layer, the vertices which involvedUence O.f the fact tha@ the vector potenn_al only couples
to the in-plane fermionic current. Notice also that

fermions from both conduction and valence bands are of or- ()7 nr(2) ] :
der U whereas the vertices involving only valence or only Mr'(@)=Mg“(a+Q). Since for the calculation of the Ra-
conduction band fermions are of ordeand in the nonreso- Man intensity we have to integrate over the whole Brillouin
nant regime can be omitted in the calculations to lowest orZ0N€, We can restrict our considerations to only one type of
der int/U. magnon, and just multiplil g by 2.

We now have all the necessary tools to calculate the Ra- We now change tracks and compute the matrix element
man matrix elemenMg in a diagrammatic technique. A Mg Within the Loudon-Fleury theor}f. i.e., we assume that
simple analysis shows that, just as in the case of a single Spins interact via the Heisenberg Hamiltonian
layer, there are three diagrams which contributemMg to
leading order irt/U (see Fig. 4 in Ref. 12 One has to keep _ . e
in mind, though, that the calculation of these diagrams now H _Jl<i%a Su S“"+J22i Sti-S2i (13
involves four bands and two different type of magnons. Do-
ing the same manipulations as in Ref. 12 we obtain for theAs before,a=1,2, and the scattering of light is described by
total Raman matrix element the Loudon-Fleury Hamiltonian
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two differentplanes. Specifically, the Loudon-Fleury Hamil-
HLF:A_; (Eix€1xSj,a* S+ 5,.at €iyerySj 0" S+ 5, .)- tonian expressed in terms of projection operators should
o (14 have the form

Here, A is a coupling constant anéi= (Jy, ) is a vector to Hoc= A p 5)S. .S, .
nearest-neighbor sites in a plane. Observe that this scattering LF Blj;a (8 181.0) S S
Hamiltonian has the same form as for a single layer. This is

again a consequence of the fact that light only couples to the +A p 0S::-S, . 19
in-plane fermionic current. Following the standard proce- Al; (& .8.00S- S 19

dure, the spin operators are now transformed to boson opera—h P S\ is th bef N the first t
tors via the conventional Holstein-Primakoff or Dyson—W ereP(e €, 9) is the same as before. Here, the first term

Maleev expansions. The easiest way to proceed is t es_cribes scattering B, geometry, while the se_cond term
introduce just one Bose field with momentum in the full first which COUP'eS Spins frpm cri:fferentflayersoptrrgbutes to
Brillouin zone, and then perform a unitary rotation to mag-~1g Scattering. Comparing the two forms of the Loudon-

non operators which diagonalize the quadratic form for & €ury Hamiltonians, we obtain for the two coupling con-

two-layer Heisenberg antiferromagnet. As for a single planeStants

the transformation to magnon operators involves the same

coefficientsh1(q) and u41(q) as in Eq.(12). App=4t2
Retaining only the term in the scattering Hamiltonian

which contains two magnon creation operators, we obtain fofrhe two forms of the Loudon-Fleury Hamiltonian indeed

the Loudon-Fleury matrix element yield the same Raman matrix element as in 8d).

J 2
72 Am=—8% 707
4A7=02)3; 4A%—Q

. (20

Mg .= = AM{201(Q) o) (€ixCix T Eiyry) lIl. RAMAN INTENSITY

5 5 IN THE NONRESONANT REGIME
I[)\:l_(c])"":le(q)](eixefxCOEQX"'eiyefycosqy)}' (15 A. Noninteracting case
15 '
) ) The Raman scattering cross section is proportional to the
Comparing the two expressions fMg, Eq. (10 and EQ.  ggiden Rule transition rate
(15), we see that they are identical provided we identify the

coupling constant 83t
R=302——2 IMgl?d(hw—fior+e—e€p), (21)
ZA ﬁ \Y (O OF
AZS&FLAZ_Q?} (160 wherei andf are the initial and final states of the system,

€; 1 are the corresponding energies, and the summation runs

This concludes our derivation of the Loudon-Fleury Hamil- over all possible initial and final electronic states. Let us first
tonian for a two-layer system. neglect the final-state magnon-magnon interaction. Then,

Before we proceed with the calculations of the Ramane;—e;=20,(q), and using(10) we obtain for the Raman
intensity, we would like to comment on the form of the intensity in theA,y andB,4 channelgdropping an identical
Loudon-Fleury Hamiltonian. In some phenomenologicaloverall prefactor
theories for a single layer, the interaction Hamiltonian be-
tween light and spin degrees of freedom is written as

()52 (ME)2601 i~ hw=204(a))
HLF:A% P(qvef!é)sa,j'sa,j-Pﬁv (17) :2A22 (2)2(2\]1(1_1]0]))2
4J; Q4(a)

where a
X (hwi—hwi—204(q)),

1
P(&.6.0)=|56 &= (5-&)(5 &) (18
lo, ()22 (MR))?8(i 0~ frwg—204(q))
q

This formula is obtained fron{14) if the term which de-

scribes scattering ik, geometry is neglected. For a single 2 ~\2
. g . . . J2 2‘]1VC|
layer, this procedure is legitimate as the scattering Hamil- =2A% 1+ 23, E Q
tonian in A;; geometry commutes with the Heisenberg 1 a 1(9)
Hamiltonian, and consequently there is Agy scattering. X 8(hw;—hwi—204(0)), (22)

However, for a two-layer system, more care is needed as the

Heisenberg Hamiltonian now contains an extra term with awhere Q) =w;— w; and we have defined
interlayer coupling, which does not commute WHi-. Asa  74=(cogj,—cogy)/2. We see that the Raman intensity in
result, if we want to rewrite the Loudon-Fleury Hamiltonian the A,y channel is proportional toJp/J;)? and thus van-
for two layers using the projection operat®r we necessar- ishes with vanishingl,. In B,y geometry, the changes in
ily have to introduce an extra term which contains spins froml Big imposed by the interlayer coupling are minor: The form
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of the matrix element is preserved and the only changes ap-

pear in the prefactor and in the magnon energy dispersion A1g geometry (2 Iayer system)
Q4(g). The momentum sums in Ed22) can be conve- ) '
niently reduced to complete elliptic integrals. The resulting 16 | 291 =
expressions for the intensities are, however, rather involved; Joldy =
they are collected in Appendix C. Here we discuss only the
main features of the Raman spectrum.

Our key observation is the following: The magnon energy
Q4(q) is gapless at the zone centg=0, and has a gap
0,(Q)=2y3,J; at g=Q. Then, for Q=w;—w;
<204(Q), only magnons with momentum nega=0 can be
excited. The numerators in both scattering geometries vanish
atg=0, and it is not difficult to show that the contributions 2 |
from theq~0 region yieldl (Q) =< Q3 (see also beloy For , , , ,
0>204(Q), however, also magnons with=Q can be ex- 0 05 1 15 2 2.5
cited. In Blg geometry, the numerator |I"|3 contains the B1g geometry (2 layer system)

4 T T T T

factorv vq which vanishes afj= Q such that the opening of a
new scattering channel does not cause substantial changes in->35F  Jo/Jy =01 ——
the intensity which still scales &3. However, inA14 ge- Jofdy =0.3
ometry the numerator |hA 19 atq=Q is just a positive con-

stant. In this situation, the scattering intensity changes dras-
tically at 0 =20,(Q): Using Eq.(22), we find

Intensity (arb. uni ts)

rb. unit

~
T

1 [204(Q)+ 6] 1, [204(Q) - So]
Alrer™ g 2902(Q)— 0]
25607 0

=— - (23 0 05 1 1.5»” 2 25
[Q(Q)]* Transferred Frequency (in units of 4J1S)

Intensity (a

g
h

ForJ,/J,;=0.1 we obtainAl,,~ 1600; i.e., the enhancement ~ FIG. 2. The Raman intensities iA;q and B,; geometry ob-
of the A, signal at the threshold frequency is very strong. tained in the Loudon-Fleury theory neglecting final-state magnon-

Moreover, the value of the intensity in tm'el channel  Magnon interactions. The jump in the intensity in &g geometry

5 3z oceurs at the frequency(®(Q) =4(J,J;)*2 The overall shape of
right above the threS'hC)ld"A x‘] 2/21(Q)=J; (‘]2/‘] 1) the intensities is shifted towards higher frequencies with increasing
has the same order of magnltude as the intensity |rBtﬂJe 3,135

channel,l g, oc[Ql(Q)]3oc(J2/J 1)¥2. We found that for all

reasonable values fod,/J; the ratio of intensities is
~1.7—1.9. In other words, if the Loudon-Fleury approxima- J1—J;
tion is applicable, and if one claims to observe the two-
magnon profile inqu geometry at arounc(ll(Q)_, one 1y (1= v)[43,(1+ vg)+J,]
should also observe, in a two-layer system, the signal of an r=1—-—> 9 9 ,
even larger intensity in tha,; geometry. q 2Q04(q)
The intensities for thé\;; andB;4 geometries without a
final-state interaction are plotted in Fig. 2 for two different 431(1-vy)
values ofJ,/J;. There are unphysical singularities in both Jo—=dp| 1+ ' =1- _zq: 20,(q)
intensities at the maximum magnon energy, but just as in the
case of a single layer, they are artifacts of neglecting interwhere the momentum sums run over the whole first Brillouin
actions between magnons. We will see in Sec. Il B that onceone(notice that we definef); without a factor of &). This
an interaction is included, the unphysical singularities ara@enormalization comes from one-loop diagrar@guchi
removed. correctiond?). Beyond the leading order in 3/ one has to
solve Eq.(24) self-consistently and also include corrections
with a higher number of loops. Numerically, however, it
turns out that the dominant correction, at least to order
We now analyze how the two-magnon profile changesl/S?, still comes from one-loop diagramsin other words,
when the interaction between magnons is included. First othe actual magnon dispersion nearly preserves the same form
all, the magnon-magnon interaction renormalizes the spinas in linear spin-wave theory, but contains renormalized cou-
wave spectrum. To leading order irSLAvhich we only con-  pling constants), ,. Below we will assume that this renor-
sider here, this renormalization can be absorbed into thenalization is already included in the definitions &f, and
renormalization of the exchange couplings neglect it in our further consideration.

1+

r
2S

!

75 (24)

B. Interacting case
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Strictly speaking, to justify this approximation for the cal-
culation of the effects due to a final-state magnon-magnon B1g geometry (2 layer system)
interaction, we also have to prove that the dominant renor- 7 ; ' ; ;
malization of the four-magnon interaction vertex can be ab- 6l Joldy=01 —
sorbed into the same renormalization of the exchange inte- )
grals. We did not perform explicit %/ calculations for the st Jo/J1=0.3
vertex. However, as the vertex itself has a fact& ity com-
parison to the magnon frequency, and all calculations involv-
ing magnon-magnon scattering will be performed only to the
leading order in 13, then whether to use a bare or a renor-
malized J; , in the vertex is beyond the accuracy of our
calculations. For simplicity, we will henceforth use renor-
malized values o, , everywhere. 1y

We now consider in detail the renormalization of the two- . S
magnon profile due to multiple scattering of two magnons. 0 0.5 1 15 2 25
The magnon-magnon vertices can be immediately obtained Transferred Frequency (in units of 4 J1S)
from the Heisenberg Hamiltonian by applying, e.g., the
Holstein-Primakoff transformation to boson operators and 8 ;5 3 The Loudon-Fleury Raman intensity By, geometry
subsequent canonical transformation to magnon Operatofg, 5 final-state interaction for two different values f/J; .
which diagonalize the quadratic part of the spin-wave Hamil-
tonian. A detailed study of the effects due to magnon-at the incoming photon flips two neighboring spins on the
magnon interactions in a single-layer antiferromagnet wagame |ayer. This creates misaligned spin pairs and thereby
already performed by Canali and _Glr\hh,and.we follow increases the total energy of the system. Evaluating the cor-
here their line of reasoning. To leading order i§,1We can  responding energy increase for a ellestate, we obtain a

restrict ourselves to the scattering process which CONSEVe§o-magnon peak a€=3J,(1+J,/3];) which is roughly
the number of magnons. The effective scattering Hamilgnsistent with what we find.

Intensity (arb. units)

tonian then takes the form In A14 geometry, the solution of the ladder series is more
1 difficult since the “side” vertex behaves as
|_|mag_nww:N E V(kaQ)a;ﬂiqakﬁfka (25) ~(1—vq)/_Ql(q) where g is_ the magnon momentum. At
kg small g, this vertex scales linearly with as a consequence
: of the Adler principle*® The Raman matrix element includes
with . . .
the interaction between fermions and Goldstone bosons, and
ByB, { A2 this interaction should vanish at the points where the magnon
Vk)=A5—70a = Bokog oo 1 26, energy turns to zero. Because of the extra power of momen-
k=A0 00 @ P 0,000, (20 9y P

tum in Mg, the Raman intensity without a final-state inter-
and action scales aBAlgocQ3 at very low frequencies, as men-

_ _ tioned before. However, the form of the “side” vertex in
A=(1,+4J1)12, By=(J,+4J11)/2. (27) A14 geometry isnot reproduced at the magnon-magnon ver-

In terms of A and B, the magnon dispersion is given by ©X and we in fact have to solve a set of coupled integral
Q,(k)= /AZ—BE. equations in order to get the result for the fuulg. The

In order to find the full vertex function for repeated two- explicit expression fof,, is rather cumbersome, and so we
magnon scattering we need to sum an infinite series of laddgresent it in Appendix D and here discuss only the key fea-
diagrams. InB;4 geometry, the “side” vertices from the tures of the solution.
electron-photon coupling scale ag= (cos—cosy,)/2, and As the “side” vertices forA,4 are invariant under trans-
it is easy to see that the only term in Eg6) which contrib-  formations of the symmetry group,, of the square lattice,
utes to scattering is the one with_, . The evaluation of the we can restrict ourselves to only that part of the scattering
ladder diagram series then proceeds exactly in the same waptentialV(k,q), which has the same symmetry, i.e.,
as for a single-layer systeh? The analytical solution is
presented in Appendix D.

The plots for the Raman intensit),glg for two values of

43, a3,\ " a3,
J,/1J, are shown in Fig. 3. The unphysical singularity that 5
we found in the noninteracting case disappears, as expected, (231)° (1= v (1~ vg)
and we observe a pronounced two-magnon peak. We see that Qg

with increasingJ,/J; the two-magnon peak not only shifts .-
to higher frequencies but that the amplitude of the signal als € see thatV(k,ql) actually tends to a finite value_ for
=qg=0. The cubic frequency dependence qulg(Q) is

slightly increases. The latter, however, is mainly due to the _ i ] )
overall factor (1 J,/43,) in the matrix element and a renor- theref_ore actually an .artn‘act .of qeglectlng the flnal-s'Fate in-
malization of the Loudon-Fleury constant from magnon-  teraction. When this interaction is mcludek;i\,1g scaleslin-

magnon interactions. The shift of the peak position towardsarly with ) at the lowest frequencies. We also found that
higher frequencies can be understood in the simple picturthe real part of the polarizability has a logarithmic singularity

V(k,a)=—-2J,

J J J
Vvt et —2(1 2)

(28)
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at 3=20,(Q). This singularity gives rise to two effects:
First, it makesl A 8 continuous function of frequency, in
other words, eliminates a jump in the intensity @ 4Q).

Second, it gives rise to a strong peakl jﬂqg at frequencies
somewhat smaller than(2,(Q). Specifically, we found that

near 2)4(Q), the dominant contribution to the intensity
comes from the third term in E28), andIAlg has the form

Ay, J,=0.2J; N=1000

2.0

=
<

—0=0.075
----0=0.005

(a)

Raman intensity (arb. units)

3475

1.0 h 8
| o2 24(Q) ny (29 f\
Asg zm A’ 0.51 T
Where 0 T = T T .:‘
0 0.5 1.0 1.5 2.0
3, 20,(Q)-Q 1 Jz<91(Q))3 Transferred Frequency YQ -
Rl: 1 y 2:_ - .
2m(01(Q) " 204(Q) 43\ 23 30 A, J,=0.4J; N=1000
@ (b) —0=0.075
I,&lg remains finite atQ)=20,(Q) and is proportional to = 157 --.8=0.0051
J%/Ql(Q). We see that there exists a very narrow peak in 2
IAlg located atQ)=20,(Q){1—exd —2m04(Q)/J,]}. The 'C%
intensity right at the peak is very highAlgocllﬂ"f(Q). At E 101 : 1
small J,, the peak position is exponentially close to g i
204(Q). However, at larged,, we found numerically that 2 i
the peak is actually located at frequencies significantly & 57 h i
smaller than 2),(Q). This last result agrees with the calcu- g '.
lations of the two-magnon absorption profile in Ref. 20. g A N
The solutions forl 5, for two different values ofl,/J; ,53 0 : 4 : ,
; ed in Fi 05 10 15 20
are graphically presented in Fig. 4. Thg; Raman spectra 0 : . ‘ :

have been evaluated on a finite lattice with 18AMO0 lat- (b)
tice points. A finite imaginary paiits has been added to the
energy denominators of the spin wave propagators in Egs.
(54), (55), and(56) in Appendix D. This allows us to study
the influence of damping on th&,;, two-magnon spectra.
Without damping, the imaginary part of the polarizability has
a jump atQ)=20,(Q), and by the Kramers-Kronig relation,
the real part of polarizabiliyR; term in Eq.(30)] necessarily
has a logarithmic singularity; see Figck With damping,
the singular behavior near the threshold frequency is re-
moved and the peak position is shifted closer 13,2Q).
Note also that, as iB,, geometry, the divergence at twice
the maximum spin-wave frequency is removed due to the
final-state magnon-magnon interaction.

Finally, for the purpose of comparison with experiments, . - : :
it is useful to compute the ratio of the Raman intensities for 0 T ‘f"s dF lenc (in Unli:S of 4J 8)2
A4 and B,y geometries right at their peak positions. We ransierred Frequency !
found that this ratio is actually very small: Fd5/J,;=0.1 it
is about 0.009, Wher(_aas fd_g/leo.B, it is _0.044. In other FIG. 4. The Loudon-Fleury Raman intensity Ay, geometry
words, though thé\,4 intensity at the peak is larger than the yith a final-state interaction(a) for J,/J;=0.2 and (b) for
intensity of theB, 4 signal at the same frequency, the overall 3,3, =0.4 include effects of magnon damping which were mod-
scale of the peak is only a few percent of the two-magnorled by adding a finite imaginary paré to the energy denomina-
peak inB,, geometry. We therefore have to conclude that intors of the spin-wave propagators. The transferred frequency in
the nonresonant regime where the Loudon-Fleury theory ighese two figures is given in units of the maximum spin-wave fre-
applicable, the extra peak iA;, geometry can hardly be quency(Q . The low-frequency peak in the intensity is located at
separated from the background signal. We now considex frequency somewhat smaller thaf) Q). With increasing
what happens in the resonant regime, i.e., when the incidemglamping the peak frequency is gradually shifted closer to
photon frequency becomes comparable to the Mott-Hubbard1(Q). For comparison, in(c) we plotted the intensity for
gap. J,/J1:=0.4 without any magnon damping.

Transferred Frequency YQ -

A1g geometry

Jo/J1=0.4

Raman intensity (arb. units)
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IV. THE RAMAN INTENSITY coming photon comes close to the Mott-Hubbard gap,

IN THE RESONANT REGIME 2A~U. Actually, most of the experiments on two-magnon

I N Raman scattering in parent high-compounds have been

In our derivation of the Loudon-Fleury Hamiltonian, we yone with visible light frequencies which are on@(J)

have chosen the diagrams to leading ordet/ th under the apart from 2.
assumption that the energy of the incoming and outgoing " |t was shown in Ref. 12 that in the resonant regime, the
photons is much smaller than the energy gap between th§iagrams with intraband scattering are more relevant than
conduction and valence bands. Under these conditions, alhose which contribute to the Loudon-Fleury theory, and,
denominators in the diagrams Figgaj-4(c) in Ref. 12 were  moreover, the dominant contribution to Raman scattering
of order U which in turn allowed us to omit all diagrams comes from just one diagram shown schematically in Fig. 5.
with intraband scattering. The situation, however, become3his diagram yields a Raman matrix element
different in the resonant regime where the energy of the inM=M%+ Mg, where

. 1w, [(de/IK,) e [ (I€—ql IKg) et ] a€ia— Ng€i 12
M§=8iﬁz k i k=q'9RB/ =l tq®k—q Mgk _ 31)
KB (= 2E; +18)[wj—Q1(0) —Eg —Ei_qti6](w1—2E;_y+i0)
|
One of the key consequences of considering the resonance N J1d; 1-vy,
regime is that there exists a nonzero signahi geometry Mg | voQa(a)+ —— 00" (32

even for a single layer. Indeed, the absence ofAfgesignal

in the Loudon-Fleury theory was related to a particular form

of the interaction HamiltoniarH, ¢ which contained only At small frequencies, the contributions to the Raman inten-

spin degrees of freedom. The inclusion of the intraband prosity come only from magnon momenta negr0. We see

cesses modify the form of the interaction Hamiltonian withfrom (32) that for these momenta}; scales linearly with

light, in which case it no longer commutes with the Heisen-the magnon momentum, just as we found in the Loudon-

berg Hamiltonian even whea=e;= (X+V)/42. Fleury approximation. Clearly then, the full Raman intensity
The feature of the diagram in Fig. 5 which makes it domi-in the g\bsence of a magnon-magnon interaction scales as

nant for By, scattering in the resonance regime is that ita,,*€2" at small frequencies. We studied the effects of the

allows all three denominators to vanish simultaneously, leadMagnon-magnon interaction and found that, as before, the

ing to a triple-resonance enhancem®nEor two-layer sys- bare form of the side vertex is not reproduced in a perturba-

tems, we should check whether or not the rapid variation ofion theory for magnon-magnon scattering, and the finite-

| . near 22;(Q) can be enhanced when the incident photorState interaction gives rise to a linear, rather than cubic fre-
19

tr

frequency is tuned right to the triple-resonance value. Wéquen(?y dependence delg' Mor.eover., aSMR_ does not )
performed computations analogous to those in Ref. 12 angontainJ, as the overall factor, it obviously gives a domi-
found that there is in fact no enhancement at the frequencjant contribution tol, . This in turn implies that at
threshold forA,4 scattering because the occurrence of the(2 <2(),(Q), the Raman intensity in a double-layer system
triple resonance requires that the fermionic velocities at mois roughly half of the intensity in a one-layer system.
mentak, [w;=2E~(Ky)] andky+ g, whereq is the magnon For 0>204(Q), magnon momenta nege= Q also con-
momentum, be antiparallel to each other. GerQ, we evi-  tribute to 1(Q). It is not difficult to verify that this extra
dently haveV,E; |, =ViEilx,+q; i-€., the two velocities
areparallel. In this situation, the integration over the fermi-
onic momenta nedk, gives zero because all poles lie in the
same half-plane. We also performed more detailed calcula- q
tions by expanding the denominators up to second order
aroundk,. This actually makes the integral ovkr-kq fi- kt k-q
nite, but still there is no singularity iM§ at w;— 2By, and
so we do not expect any substantial enhancement of the Ra- W: Rkl
man intensity in theA;4 channel due to a triple resonance. s -

Despite the absence of the enhancement, the diagram in kt " k-q}
Fig. 5 is still relevant in the resonant regime simply because
it contains three denominators which all aBgJ). Since
there is no resonant enhancement, then, to first approxima-
tion, one can just set the denominator(81) to a constant
and consider the basic structure Mf; as imposed by the FIG. 5. The “triple-resonance” diagram which gives the domi-
interaction vertices between magnons and fermions. Perant contribution to the Raman intensity in the resonant regime.
forming simple calculations, we obtained frai3il) The notations are the same as in Fig. 4 of R&g).
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term in M%, and its inclusion will just change the relative
strength of the two terms i(B2).

A1g geometry

0.6 T T

05 V. DISCUSSION

We first summarize our results. We considered in this
paper two-magnon Raman scattering in a two-layer Hubbard
model at half-filling. We applied the SDW formalism and
derived diagrammatically the Loudon-Fleury Hamiltonian
for the interaction between light and spin degrees of free-
dom. We found that in a two-layer system, the scattering in
A14 geometry is finite already in the Loudon-Fleury approxi-
mation. Without a final-state interaction, the intensity in this
channel scales a$)® at low frequencies. The magnon-
magnon interaction effects are numerically small, but never-
Transferred Frequency (in units of 4J4S) theless they change the frequency dependentg, to-() at

small frequencies. Furthermore, there is a very strong reso-
FIG. 6. The “triple-resonance” diagram contribution to the Ra- nance neaﬂ:4(‘]1J2) 1/2’ when a second Scattering channel
man intensity inA;y geometry. The final-state interaction is in- opens up. At resonance, the amplitude of fg signal is
cluded, andJ,/J;=0.1. Observe the flattening of the intensity larger than the amplitude of ﬂﬁlg signal at the same fre-

above the threshold. There should(ethe absence of damping  ,ancy. We also argued that in the resonance regime relevant
real jump at the threshold frequency — its smearing in the figure is

due to limited numerical accuracy.

04

03 -

02

Intensity (arb. units)

0 1 1 1 1 1 1 1 1 L
0 02 04 06 08 1 12 14 1.6 1.8 2

contribution has the same dependenceJghl; as in the Sr,Cu0,Cl, /
Loudon-Fleury theory. Accordingly, if we consider only
MY, we obtain qualitatively the same form of the, inten-

sity profile as in the Loudon-Fleury theory — the only dif-
ference is that now the intensities below and above the jump
at 20,(Q) are of the same order of magnitude. Our result
for the A,4 intensity computed wittM§ with a final-state
interaction is presented in Fig. 6. Qualitatively, the intensity
profile is the same as in the Loudon-Fleury approximation,
but the new features are a substantial increase in the intensity
above the threshold at(2;(Q) and the flattening of the
Aqq intensity slightly above the threshold frequency. There
may also be a very narrow peak slightly below the threshold
frequency(just as we obtained in the Loudon-Fleury theory
which we do not see because of a limited numerical accu-
racy. In any event, however, the singular behavior at this
peak is eliminated by damping.

The total matrix element for th&, 4 scattering is a sum of
Loudon-Fleury and triple-resonance contributions. Without
studying in detail the frequency dependence of the denomi-
nator in (31) we cannot compare the overall strength of

Raman Intensity (arb. units)

Mg andM§. In general, in the absence of the enhancement 0 1000 2000 3000 4000 5000

due to an actual triple resonance, the two contributions
should have the same order of magnitd@i&xperimentally,
however, the overall intensitiand, to some extent, the foym ) ) ) )
of the A;; Raman profile demonstrates a substantial depen- FIG. 7. Experimental Raman scattering dataix’ scattering
dence on the incident photon frequency. Besides, as wasometry for(@ single-layer S3CuO,Cl, and (b) double-layer
noted above, the Loudon-Fleury result for thg, intensity YBa,Cus0g, single crystals. The data are taken from Ref. 36.
at the threshold is more than 1000 times smaller than thtg)bserve the flattening of the intensity in YBCO at around 1800

B._ intensity at it . hile th . tal int ¢m™ L. For both crystals, the excitation energyis 2A +2.9J, (the
1g INtENSIty at 1ts maximum, while (€ experimental INen- . . yajues are 2.33 and 2.09 ev correspondjngine con-

sity ratio is gbout 40 times smaller in the vicinity of the triple . ,um intensity at high frequencies is presumably due to multi-
resonance ifB,, geometry, and even far smaller away from 5500 Raman scattering, and the sharp peaks at low energies are
the resonance. It is therefore very likely that the Loudon-gye to resonant multiphonon scattering that becomes strongly en-
Fleury contribution to theA4 intensity is just a minor cor- hanced for excitations close taA2 The dashed line is a fit to a
rection to the intensity given by the triple resonance diagramiinear + cubic frequency dependencex[c(w/J;)+ (w/J;)3],
Notice also thaM i has exactly the same form as the secondwherec=1.6 for SL,CuO,Cl, and 1.3 for YB3CuzOg ;.

Raman Shift (cm™")
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to experiments on parent high- compounds, there is no rectly. We therefore believe thd,~0.1J; is a reasonable
enhancement of the peak intensity A3y geometry due to though indirect estimate af,.

the actual triple resonance. Nevertheless, the diagram with Notice thatJ,~0.1J,~150 K is consistent with the esti-
three resonant denominators is dominant in this regime as ihate obtained from the analysis of the NMR data in similar
yields a finiteA,4 intensity even withoud,. systems. More rigorously, we can place the upper bound on

In Fig. 7 we present the experimental data for thg, possible values of, because whatever the interpretation of
Raman intensity for single-layer SCuO,Cl, and the the low-frequency measurements is, the data above 2000
double-layer YBaCu3Og4; compounds® We see that at cm™?! clearly show no influence of the interlayer coupling.
transferred frequencias=2000 cmi !, the intensity profiles This in turn implies that in any event, the threshold fre-
in the two compounds are similar. The sharp peaks at thguency is lower than 2000 c¢m, or J,<0.25],. Even this
low-energy tail of the two-magnon band are due to resonangstimate is substantially smaller thda~0.55], extracted
multiphonon scattering that becomes strongly enhanced fdrom the data of infrared transmission and reflection mea-
excitations close to 8. Despite the overall similarity of the surements in YBCG° Given that inelastic neutron scattering
two figures, there are clear differences at low frequenciesneasurements were unable to detect the optical spin wave
The intensity in a single-layer compound continues to debranch in antiferromagnetic YBCO up to 60 meV, it was
crease at frequencies smaller than the resonance frequencagued’ that the gap 2[;J,)*? should be larger than 60
for phonon scattering, while the intensity for a two-layer meV. We therefore conclude thdy must be in the energy
compound flattens at frequencies somewhat larger than thange 8 meV<J,<30 meV.
resonance frequencies for phonon scattering, and remains flat
down to the smallest measured frequencies.

At the moment, we do not understand the origin of the
background contribution to the scattering in YBCO, butitis It is our pleasure to thank D. Frenkel, M.V. Klein, A.
unlikely that this background contribution is related to scat-Millis, and H. Monien for helpful conversations. A.C. is an
tering in a half-filled insulator. A more likely possibility is A.P. Sloan fellow. A.P.K. gratefully acknowledges support
that the background is due to the fact that the measuredy the Deutsche Forschungsgemeinschaft through a Heisen-
YBCO compound has some finite amount of holes. In anyberg grant and the Sonderforschungsbereich 341. G.B. was
event, however, we see that the intensity flattens at abowupported by NSF cooperative agreement No. DMR 91-
1800 cm!, and is rather flat at even lower frequencies. 20000 through the Science and Technology Center for Su-

This behavior is consistent with our result for the resonanperconductivity.
regime where the experiments have been performed: The

Ayg intensity evaluated forJ,=0.1); flattens at about APPENDIX A: DERIVATION OF THE ENERGY

— 71 - - _
1.8), .180;’ cm -, and 'ls rlough'y 2 “mesdﬂa“gr aé 'Ok‘:" frﬁ DISPERSIONS OF THE QUASIPARTICLE CONDUCTION
qguencies thanin a Single-layer compound. Indee ,thet eory AND VALENCE BANDS

also predicts that there should be a jump in the intensity at

the threshold frequency. However, if we associate the onset In this appendix we derive the dispersions for the valence
of flattening with 1800 cm?, we find that the jump occurs at and conduction fermions in the one-band double-layer Hub-
about 1200 cm?!, i.e., right at the frequencies where the bard model at half-filling. After Fourier transformation to
Raman signal is presumably dominated by phonon scattermomentum space the Hubbard Hamiltonian, EL, takes
ing, and so there are little chances to observe this jump dithe form

ACKNOWLEDGMENTS

H= kz (_4th)(CE,(er,0'+ dl,o-dk,o-) _t,; (Cl,(fdk,a—’_ dl,o-ck,o-)

e > (cf I +d,.. df _.d d Al
m (Ck/+q'g-Ck’—lTC—k,,—0'Ck+q,lT k'+q,0 k-0 —k',— k+q,a')- ( )
kk',g.0

The presence of long-range antiferromagnetic SDW order in the ground state implies that

1 1
N; <CI+1-:,TCK,T>: - N; <Cl+mck,i>: m#0,

1 1
Nzk: (dfy O )= Nzk: <dl+w,Tdk,T>: m. (A2)

Introducing the linear combinations

1 1
ak,UZE(CkU_F dko’)v BKUZE(CKU_ dko')v (A3)
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and decoupling the interaction term with the expectation valugé®f, the Hubbard HamiltoniafAl) turns into

HZEE’ —4 Y T _nf —U T T
N{ {( tVk t)(ak,oak,(r Bk+7r,a'Bk+7r,(r) msgr(0')[ak,018k+77,(r+Bk+w,0’ak,(r]

+ (4th_t’)(a’l+ ﬂ',o’ak+17,(r_18l,o-ﬁk,(r) - Umsgr(o-)[aL 77,0':Bk,(r+ﬁl,0'ak+ 11',0']}1 (A4)

where the primed momentum sum is restricted to the mag- L Ji(1=vg) J1(1— v+ 3,/237)
netic Brillouin zone. Two separate Bogolyubov transforma-x11 (9,9,)=— 2207 )+i5_ 2-0%(q)+is
tions applied to the first and second parts of the Hamiltonian @ 1q @ 2\q

(A4) yield two pairs of conduction and valence bands with

the  dispersions +E; =+ [(4ty+t')?+A%?  and . 1 o o

TE =% 4ty,—t')2+ A% The self-consistency condition X11 (9,9+Q,w)= > wz—Qz(q)+i5+ 2= Q2(q)+id|
for A=Um requires that ! 2

(B3)
i_iEr i+i (A5) when the spins are from the same laygys; (4.9)
- + — . — — —
U 2N% [El  E =x22 (4,9) andx;; (9,9+Q)=—x2, (4,9+Q)], and
APPENDIX B: TRANSVERSE SUSCEPTIBILITIES IN A J1(1—vy) J1(1— v+ J,123;)
DOUBLE-LAYER ANTIFERROMAGNET X1z (4,0,0)=—— 4 2

0?—Q3qQ)+id w’—Q5(q)+is
The dynamic, transverse spin susceptibility is obtained
from the time-ordered correlation function
w w
0?=Q3(q)+i6 -3 +is)
(B4)

1
N o X1z (4.0+Qw)=3
Xap (4,00 =(TS; (1)S_, 4(0)), (B1)

where the indicesy,3=1,2 denote the layer. In terms of
fermion operators the spin raising and lowering operatorsvhen the spins are from different layersyy, (9,q)
S;.« are expressed through =xs (,9) and x;, (9,9+Q)=—x3; (4,d+Q)]. The
poles of the susceptibilities are at(,(q) and
1 R Q,(9)=Q4(g+Q), as they should. Using these results, one
S‘“:NE > cl+q’ﬂowck,,,, can construct the effective Hamiltonian for the magnon-
Komv fermion interaction, Eq(7), by the requirement that it repro-
duce the forms of all these susceptibilities.

-

1
=— df .. o, dy,, B2
Sn,z NEk: v kebau® pv=kow ( ) APPENDIX C: RAMAN INTENSITIES WITHOUT A

MAGNON-MAGNON INTERACTION
wherga are the Pauli matrices and tleeand d operatorg In this appendix we present the closed formd of and
describe the electrons from layers 1 and 2, respectively. . ) . 19,
Summing the random phase approximatigRPA) ladder 'Blg without a final-state magnon-magnon interaction. The
diagram series for the transverse susceptibilities as describégtual calculations have been performed to leading order in
in detail in the literature for a single-layer systénif-*°leads ~ 1/S. Here, we present the results f8r1/2. We introduce

to the resultgfor S=1/2) the short notatiorﬁ=Q/2J1 and
(e 24 3,7 (189 2a )P . J,
8% 3,7k |8A7=02 33, °T 3,a%h | 4A7—Q2 23,
1-v, 1+v_ ~ 1 1
t+_ ’ (Cl)

= , = Q = — s
1tv, 1=, =35 V(1+3,/43,)2— 0214
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wherev, = —(J,/4d;) + [1+3,/43,)]?— Q%4 . where
For Alg scattermg geometry we then obtain, 3,
(i) for 0<Q=<2J,/J;, y=J,(43;)? 1+4—Jl)
| (Q)zag(ﬁ)MK(t ) (c2) 3
Fag 1+ o a(Q)=P?(Q)+23,| RY(Q)E(Q)+ 4—\]21P<1)(Q)A(Q)}.
whereK is the complete elliptic integral of the first kind; (D2)
(i) for 2\/J2/31<Q<2\/1+J2/2J1 , Here we defined
~ [(1=v,)? W)+ RY(QIH(Q
|ag () =a0(0) | ———K(t,)+(1=v)K(t) ; _ () +R(DH(E)
& L. 3 AV o - ro@a@r ©
(iii) for 241+ 3,123, < Q<2(1+J,/4d;), _ 23,RY(Q)
HIO= 155,000 b4
~ 1
Ly, (@) =ag(@){(L- v )K(t)+(1-v)K(t)}  (C4)
: , 33RO (QD)A(Q) +RM(Q)
For Big scattering geometry we obtain, E(Q)=- 1+23,0(Q) , (D5)
(i) for O<Q<2\/J2/Jl, 1
and also
lslg(ﬂ)=bg(ﬂ)(1+ v )[K(t)—E(ty)],  (CH q
w
wherekE is the complete elliptic integral of the second kind; PM™(0)= —2 f (Q (q)) Go(0,Q+ w)
(ii) for 243,13,<Q=<21+J3,/2],,
_ XGO(_q,_(U)
I5,,(2)=bg(Q){(1+ v )[K(t,)—E(t,)]
_ B 1E 1—vg|\™ 1
v [K ()~ BTk (Ce) =52 | oy a—zmy@ s
(i) for 2414+ J,/21;<Q<2(1+J,/4],), (D6)
= 0 — —_ m
18,,(2) =bg({(1- v )[K(t,) —E(t,)] R(m (9)——2 f ZW(Q e ) 1 Go( 0,0+ 0)
+(1-v)[K(t)—E(t )]} (C7)
XGo(—q,~ )
APPENDIX D: RAMAN INTENSITY 1 1 m
WITH A MAGNON-MAGNON INTERACTION :_2 Y Ya
: : . _ N Q@) Q-204(q)+is”’
In this appendix we outline our calculations of the full (D7)

Raman intensity with a final-state interaction. Considering
repeated two-magnon scattering we sum the corresponding
series of ladder diagram(see, e.g., Ref. 21 The resulting
integral equation for the full vertex function reduces to a set
of algebraic equations which allows for an explicit solution.
We skip the details and list here only the results.

For the Raman intensity iA;4 geometry we obtain

Q—izfdw 2G4(0, Q2+ w)G
Q( )_ N 3 27qu O(ql (1)) 0( q! (1))
1 2

_- q

_N% Q-20,(q)+is’ 08
where Gy(g,w)=[w—Q4(q)+i8] ! is the noninteracting
(D1) spin-wave propagator.

For B4 geometry we find

a(Q)

' DI G )at0)

J
RPN L@(Q)—43,[LP(Q)L?
x 1
By ) W1+4J1L(°>(Q)+16J§(J2+4J1)2{L(0>(Q)L(2

'(Q)-LO)L? Q)]
(Q)=LP@)LH(Q)+[LP(Q)/43,]}

(D9)
where
Go(0,Q+ w)Go(— 0, — w)

L““m)——Z f

1 72 1

_ q
_N%

Ql(q) Q-204(q)+is"
This form is similar to the result for a single layer. The plots of the full intensities are presented in Figs. 3 and 4.

2m Q()

(D10)
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