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Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the
interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa2Cu3O61x . We present a
theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and
magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix
elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the
interlayer exchange couplingJ2 for the Raman spectra inA1g and B1g scattering geometries both in the
nonresonant regime~when the Loudon-Fleury model is valid! and at resonance. We show that within the
Loudon-Fleury approximation, a nonzeroJ2 gives rise to a finite signal inA1g scattering geometry. Both in this
approximation and at resonance the intensity in theA1g channel has a peak atsmall transferred frequency equal
to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa2Cu3O6.1 and
Sr2CuO2Cl2 compounds and argue that the large value ofJ2 suggested in a number of recent studies is
incompatible with Raman experiments inA1g geometry.@S0163-1829~96!06126-7#

I. INTRODUCTION

Since the discovery of high-Tc superconductivity,
1 a lot of

work has been done in an attempt to understand the pairing
mechanism. Most of the existing theories consider boson-
mediated pairing between electrons in the same CuO2 plane,
but there also exist arguments in favor of the pairing between
electrons in adjacent CuO2 planes.2 These arguments are
mostly applied to YBa2Cu3O61x ~YBCO! compounds in
which the unit cell contains pairs of CuO2 planes separated
by a charge reservoir. A strong magnetic coupling between
the planes of a bilayer was also suggested3–5 as a possible
source for an experimentally observed strong downturn
renormalization of the low temperature Pauli susceptibility
of holes in underdoped YBCO compounds~‘‘spin-gap’’ phe-
nomenon! as well as for the maximum in the spin-lattice
relaxation rate at temperatures well aboveTc .

6

An essential input parameter for these theories is the
value of the interplane hopping amplitude or the Cu-Cu su-
perexchange interaction between the two CuO2 planes. In
this paper, we will argue that the Raman scattering experi-
ments in two-layer compounds allow an estimate for the
value of the interlayer exchange coupling.

The Raman scattering in single-layer parent high-Tc com-
pounds has been intensively studied over the last few
years.7–12 A large number of studies has been performed to

understand the Raman spectra in different scattering geom-
etries. In B1g geometry @ei5( x̂1 ŷ)/A2,ef5( x̂2 ŷ)/A2,13
whereei , f are polarization unit vectors of the incident and
scattered photons# the dominant feature of the magnetic Ra-
man intensity profile is a peak at about 3000 cm21, which is
attributed to a two-magnon scattering process.14 The two-
magnon peak has been observed in all parent high-Tc com-
pounds. Besides, the experiments also found a strong Raman
signal in theA1g geometry@ei5ef5( x̂1 ŷ)/A2#.15 TheA1g
signal has a maximum at about the same frequency as in
B1g geometry, but the width of the peak is larger and its
intensity is about a quarter as strong.

A traditional framework for the understanding of Raman
experiments is the Loudon-Fleury theory16 which describes
the interaction of light with only spin degrees of freedom.
This theory explains a peak inB1g geometry but predicts that
there should be no scattering inA1g geometry. Recently,
however, it was found12 that the Loudon-Fleury approach
has to be modified because Raman experiments are mostly
performed near the resonant regime where photon frequen-
cies are close to the charge transfer gap of the insulating
compounds, and one can by no means neglect electronic de-
grees of freedom. In this regime, the diagrams which are
neglected in the Loudon-Fleury theory, and which contribute
to bothA1g andB1g scattering, are actually more important
than the diagrams included in the Loudon-Fleury theory.
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In this paper, we will study magnetic Raman scattering in
two-layer antiferromagnetic insulators. We will show that in
the presence of the interlayer exchange couplingJ2 , the Ra-
man scattering profile in theA1g scattering geometry ac-
quires qualitatively new features. In particular, a nonzero
J2 gives rise to a nonzero Raman intensity in theA1g scat-
tering geometry already in the Loudon-Fleury approxima-
tion. Moreover, we will see that within the Loudon-Fleury
theory, there is a very strong enhancement ofA1g intensity at
small transferred frequenciesv i2v f5dv res'4(J1J2)

1/2,
wherev i andv f are the frequencies of the incoming and the
scattered photon, respectively, andJ1 is the intralayer ex-
change coupling. At the frequency shiftdv res, the intensity
in the A1g channel actually turns out to belarger than the
intensity in theB1g channel, which, as we recall, is nonzero
already in the absence ofJ2 . In the resonant regime, when
the incident photon frequency becomes comparable to the
single-particle excitation gap of the insulator, there exists
substantialA1g scattering already for a single layer. Never-
theless, we will argue that even in this situation, in a two-
layer system, there is a measurable change of the Raman
intensity near the frequency shiftdv res. We will also con-
sider the scattering inB1g geometry and will show that in
this geometry the effect ofJ2 is much weaker than forA1g

scattering.
In principle, the presence of the new features in theA1g

Raman scattering allows one to find the value of the inter-
layer coupling. In reality, however, in YBCO, the frequency
shift dv res is in the region where the dominant contribution
to the Raman intensity comes from phonon rather than two-
magnon scattering. However, we will argue that there are
still several features of the Raman profile in YBCO which
are absent in the single-layer compound Sr2CuO2Cl 2 and
which allow one to find an estimate forJ2 . We found from
our analysis thatJ2 is likely to be about 0.1J1 . More rigor-
ously, we can place the upper boundary forJ2 as
J2;0.25J. Neutron scattering data for the spin wave veloc-
ity csw at half-filling17 yield J1;120 meV. Ascsw is only
weakly dependent onJ2 for small J2 /J1 , this implies that
the probable value isJ2;12 meV, and the upper boundary
for J2 is 30 meV. This is consistent with the estimate 5 meV
,J2,20 meV for J2 extracted from the analysis of NMR
data18 on the double-layer material Y2Ba4Cu7O15,

19 but
substantially smaller thanJ2;0.55J1 inferred from infrared
transmission and reflection measurements20 and also substan-
tially smaller than the theoretical estimateJ2556 meV by
Barriquand and Sawatzky.21

The paper is organized as follows. We start in Sec. II with
the Hubbard model at half-filling which has long-range anti-
ferromagnetic order in its ground state, and derive in a dia-
grammatic formalism the effective Loudon-Fleury model for
Raman scattering inA1g andB1g geometries in the nonreso-
nant regime~i.e., assuming that the photon frequencies are
smaller than the Mott-Hubbard gap!. In Sec. III, we use this
model to compute the Raman intensity in theA1g andB1g
channels first without a magnon-magnon interaction, and
then by including multiple scattering between magnons. In
Sec. IV, we will discuss the resonant regime. Finally, in Sec.
V, we summarize our results and discuss them in the context

of experimental data for single-layer Sr2CuO2Cl 2 and
double-layer YBa2Cu3O6.1.

II. DERIVATION OF THE LOUDON-FLEURY
HAMILTONIAN FOR THE NONRESONANT CASE

In this section we derive the effective Loudon-Fleury
model for Raman scattering using a momentum space dia-
grammatic formalism. This formalism has recently been ap-
plied to derive the Loudon-Fleury Hamiltonian for a single-
layer system.12 Technically, the calculations for two-layer
systems are more involved as one has to double the number
of fermionic operators. Conceptually, however, our approach
is exactly the same as in Ref. 12, and we therefore refrain
from discussing the calculational steps in full length.

The starting point of our calculations is the simplest one-
band Hubbard Hamiltonian for a two-layer system at half-
filling on a square lattice given by

H52t(
^ i , j &

~ci ,s
† cj ,s1di ,s

† dj ,s1H.c.!

2t8(
i

~ci ,s
† di ,s1H.c.!1U(

i ,a
ni ,a,↑ni ,a,↓ , ~1!

where thec andd operators represent the electrons of layers
1 and 2, respectively,a51,2, ni ,1,s5ci , s

† cis ,ni ,2,s
5di ,s

† di ,s , and t8 is the hopping amplitude between the
planes for which we assumet8,t ~see Fig. 1!. We will also
assume thatt/U!1 and thus perform our calculations only
to leading order int/U. This large-U one-band model with
only nearest-neighbor in-plane hopping is indeed a simplifi-
cation, but it was argued in Ref. 12 that this model already
contains the relevant physics for the analysis of Raman scat-
tering in YBCO compounds. Here we follow this reasoning
and assume that the model of Eq.~1! is valid.

The mechanism of two-magnon Raman scattering is
straightforward and has been discussed a number of times in
the literature:22 The incoming photon with frequencyv i cre-
ates a virtual particle-hole pair, which then in turn emits two

FIG. 1. The system under consideration is a two-layer antifer-
romagnet with intralayer exchange couplingJ154t2/U and inter-
layer exchange couplingJ254t82/U.
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magnons with momentaq and2q before it annihilates into
an outgoing photon with frequencyv f . For the diagram-
matic calculation of the required matrix element for Raman
scattering we thus need to compute two types of vertices: the
vertices for the interaction between the electrons and the
electromagnetic vector potential of the photons and the ver-
tices for the interaction between the electrons and the mag-
nons.

The procedure to derive the coupling of light to the elec-
trons was previously described by Shastry and Shraiman:23

The photons introduce a slowly varying vector potential
A(r ,t) in the presence of which the hopping term in the
kinetic energy of the electrons acquires a phase
@ i (e/\c)* i

jA( l,t)•dl#. The Hubbard Hamiltonian is then ex-
panded to leading orders inA. One further introduces the
staggered magnetization as the spin-density-wave~SDW! or-
der parameter and transforms to new fermionic operators
which diagonalize the Hartree-Fock factorized
Hamiltonian.24 To derive the interaction vertex between fer-
mions and magnons, one has to compute the transverse spin
susceptibilities with and without momentum transfer
Q5(p,p), and construct the interaction Hamiltonian which
reproducesall dynamic spin susceptibilities. This procedure
is unique though rather involved for a two-layer system. We
will skip the details and present only our final results~some
of the useful formulas are collected in Appendix A!.

In terms of the new SDW quasiparticle operators, the
Hubbard Hamiltonian takes the form

H5( 8
k,s

$Ek
1~ak,s

† ak,s2bk,s
† bk,s!

1Ek
2~ek,s

† ek,s2 f k,s
† f k,s!%, ~2!

where

Ek
65A~ek

6!21D2, ek
6524tnk6t8, nk5

coskx1cosky
2

,

~3!

and we set the lattice constanta051. Here and below, the
prime in the summation sign indicates that the summation is
restricted to the magnetic Brillouin zone, i.e., to momenta
wherenk.0. For a two-layer system we obtain two pairs of
conduction~described by thea ande) and valence (b and
f ) operators. The energy dispersions for each pair are shifted
by Q5(p,p). The direct gap 2D between the bands is de-
termined by a self-consistency equation for the staggered
magnetization and reduces to 2D5U in the strong-coupling
limit.

The interaction between the fermionic current and the
vector potential of light, which is relevant for two-magnon
scattering at transferred photon frequencies small compared
to the Mott-Hubbard gap, has the form

Hj52
e

\c(q j q•A2q . ~4!

j q is the current operator whose momentum can be safely set
to zero since the velocity of light is several orders of mag-
nitude larger than the Fermi velocity. To lowest order in
t/U the components of the current operator are given by

j q50
a 5(

k,s

]ek
]ka

@ak,s
† bk,s1ek,s

† f k,s1H.c.#, ~5!

whereek524tnk . We see that to lowest order int/U the
interaction with light only leads to excitations of quasiparti-
cles between the valence and conduction bands of each pair.
Excitations within each band are of higher order int/U and
are therefore neglected in our present strong-coupling theory.
It is noteworthy that the fermionic current rewritten in terms
of quasiparticles which decouple the Hamiltonian into two
separate terms@i.e., a andb operators introduced in~A3!#
contains only densities of these fermionic quasiparticles. As
a result, there are no terms inj q50 which would correspond
to excitations between the valence band of one pair and the
conduction band of the other pair~e.g.,ak,s

† f k,s).
25

We now present the result for the Hamiltonian which de-
scribes the magnon-fermion interaction. A systematic way to
derive this Hamiltonian is to extend the Hubbard model to a
large number ofn52S orbitals at a given site, and use a
1/S expansion.26,27 The resulting spin-wave spectrum is that
for a spinS antiferromagnet. In this section, we will consider
only noninteracting spin waves; i.e., we will keep only the
leading linear term in the 1/S expansion. To simplify the
notation we will, however, not keep the overall factors ofS
in the formulas and thus present the results forn52S51.

The spin-wave excitation spectrum of the two-layer anti-
ferromagnet consists of one doubly degenerate branch with
the dispersion28

V1~q!52J1A~12nq!~11nq1J2/2J1! ~6!

for momentaq in the first Brillouin zone. The dynamic trans-
verse spin susceptibility has poles atV5V1(q) and
V5V1(q1Q). For a single-layer antiferromagnet,
V1(q)5V1(q1Q), and the two poles are indistinguishable.
For two-layer systems, however,V1(q) andV1(q1Q) are
different, and it is convenient to introduce two types of mag-
non operatorsmq and nq with the dispersionsV1(q) and
V2(q)5V1(q1Q).

The electron-magnon interaction Hamiltonian can be ob-
tained in the same way as for a single-layer
antiferromagnet:12 It is uniquely defined by the requirement
that it should reproduce the forms of the dynamic spin sus-
ceptibilities, both with zero momentum transfer and with
momentum transferQ. The susceptibilities are presented in
Appendix B, and the interaction Hamiltonian which repro-
duces them has the form
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Hel-mag5(
k

8 (
q,s

@ak1q,s
† ak,2sm2q

† G21~k,q!1ek1q,s
† ek,2sm2q

† G22~k,q!

1bk1q,s
† bk,2sm2q

† G11~k1q!1 f k1q,s
† f k,2sm2q

† G12~k,q!1ak1q,s
† ek,2sn2q

† C21~k,q!

1ek1q,s
† ak,2sn2q

† C22~k,q!1 f k1q,s
† bk,2sn2q

† C12~k,q!1bk1q,s
† f k,2sn2q

† C11~k,q!

1~ak1q,s
† bk,2s1ek1q,s

† f k,2s!m2q
† F2~k,q!1~bk1q,s

† ak,2s1 f k1q,s
† ek,2s!m2q

† F1~k,q!

1~ak1q,s
† f k,2s1ek1q,s

† bk,2s!n2q
† J2~k,q!1~ f k1q,s

† ak,2s1bk1q,s
† ek,2s!n2q

† J1~k,q!

1H.c.#. ~7!

The vertex functions in Eq.~7! are

F6~k,q!5A2D@hq6h̄q#, J6~k,q!5A2D@j̄q6jq#,

G21,22~k,q!5
1

A2
@2hq~ek1q

6 1ek
6!1h̄q~ek1q

6 2ek
6!#,

G11,12~k,q!5
1

A2
@hq~ek1q

6 1ek
6!1h̄q~ek1q

6 2ek
6!#,

C21,22~k,q!5
1

2AS
@2jq~ek1q

6 1ek
7!1 j̄q~ek1q

6 2ek
7!#,

C11,12~k,q!5
1

2AS
@jq~ek1q

6 1ek
7!1 j̄q~ek1q

6 2ek
7!#,

~8!

where, e.g., the upper signs are forG21 and the lower ones
for G22 , and

hq5
1

A2
S 12nq
11nq1J2/2J1

D 1/4, h̄q5
1

A2
S 11nq1J2/2J1

12nq
D 1/4,

jq5
1

A2
S 11nq
12nq1J2/2J1

D 1/4, j̄q5
1

A2
S 12nq1J2/2J1

11nq
D 1/4.

~9!

As for the case of a single-layer, the vertices which involve
fermions from both conduction and valence bands are of or-
der U whereas the vertices involving only valence or only
conduction band fermions are of ordert and in the nonreso-
nant regime can be omitted in the calculations to lowest or-
der in t/U.

We now have all the necessary tools to calculate the Ra-
man matrix elementMR in a diagrammatic technique. A
simple analysis shows that, just as in the case of a single
layer, there are three diagrams which contribute toMR to
leading order int/U ~see Fig. 4 in Ref. 12!. One has to keep
in mind, though, that the calculation of these diagrams now
involves four bands and two different type of magnons. Do-
ing the same manipulations as in Ref. 12 we obtain for the
total Raman matrix element

MR
~1,2!528t2

2D

4D22V2 $2l1,2~q!m1,2~q!~eixefx1eiyef y!

7@l1,2
2 ~q!1m1,2

2 ~q!#~eixefxcosqx1eiyef ycosqy!%.

~10!

The indices 1 and 2 indicate whether the final state contains
two magnons of typemq or of typenq , respectively,V is a
frequency equal tov i or v f which are indistinguishable to
leading order int/U, andei , f are the polarization vectors of
the incident and scattered photons. The coefficientsm1,2(q)
andl1,2(q) are defined as

A2m1~q!5h̄q1hq , A2l1~q!5h̄q2hq ,

A2m2~q!5 j̄q1jq , A2l2~q!5 j̄q2jq . ~11!

Simple algebra yields the relations

m1,2~q!5F12 S 4J11J2
2V1,2~q!

11D G1/2,
l1,2~q!5

4J1nq6J2
u4J1nq6J2u

F12 S 4J11J2
2V1,2~q!

21D G1/2. ~12!

Comparing this result with the one in Ref. 12, we observe
that the form of the Raman matrix element for single- and
double-layer systems is exactly the same. Information about
the coupling between the layers is only contained in the co-
herence factorsm1,2(q) andl1,2(q). This is a direct conse-
quence of the fact that the vector potential only couples
to the in-plane fermionic current. Notice also that
MR

(1)(q)5MR
(2)(q1Q). Since for the calculation of the Ra-

man intensity we have to integrate over the whole Brillouin
zone, we can restrict our considerations to only one type of
magnon, and just multiplyMR by A2.

We now change tracks and compute the matrix element
MR within the Loudon-Fleury theory;16 i.e., we assume that
the spins interact via the Heisenberg Hamiltonian

H5J1 (
^ i , j &,a

Sa,i•Sa, j1J2(
i
S1,i•S2,i . ~13!

As before,a51,2, and the scattering of light is described by
the Loudon-Fleury Hamiltonian

54 3471RAMAN SCATTERING IN A TWO-LAYER ANTIFERROMAGNET



HLF5L (
j ,d,a

~eixefxSj ,a•Sj1dx ,a
1eiyef ySj ,a•Sj1dy ,a

!.

~14!

Here,L is a coupling constant andd5(dx ,dy) is a vector to
nearest-neighbor sites in a plane. Observe that this scattering
Hamiltonian has the same form as for a single layer. This is
again a consequence of the fact that light only couples to the
in-plane fermionic current. Following the standard proce-
dure, the spin operators are now transformed to boson opera-
tors via the conventional Holstein-Primakoff or Dyson-
Maleev expansions. The easiest way to proceed is to
introduce just one Bose field with momentum in the full first
Brillouin zone, and then perform a unitary rotation to mag-
non operators which diagonalize the quadratic form for a
two-layer Heisenberg antiferromagnet. As for a single plane,
the transformation to magnon operators involves the same
coefficientsl1(q) andm1(q) as in Eq.~12!.

Retaining only the term in the scattering Hamiltonian
which contains two magnon creation operators, we obtain for
the Loudon-Fleury matrix element

MRLF
52L$2l1~q!m1~q!~eixefx1eiyef y!

7@l1
2~q!1m1

2~q!#~eixefxcosqx1eiyef ycosqy!%.
~15!

Comparing the two expressions forMR , Eq. ~10! and Eq.
~15!, we see that they are identical provided we identify the
coupling constant

L58A2t2F 2D

4D22V2G . ~16!

This concludes our derivation of the Loudon-Fleury Hamil-
tonian for a two-layer system.

Before we proceed with the calculations of the Raman
intensity, we would like to comment on the form of the
Loudon-Fleury Hamiltonian. In some phenomenological
theories for a single layer, the interaction Hamiltonian be-
tween light and spin degrees of freedom is written as

HLF5L(
j ,d

P~ei ,ef ,d!Sa, j•Sa, j1d , ~17!

where

P~ei ,ef ,d!5F12 ei•ef2~d•ei !~d•ef !G . ~18!

This formula is obtained from~14! if the term which de-
scribes scattering inA1g geometry is neglected. For a single
layer, this procedure is legitimate as the scattering Hamil-
tonian in A1g geometry commutes with the Heisenberg
Hamiltonian, and consequently there is noA1g scattering.
However, for a two-layer system, more care is needed as the
Heisenberg Hamiltonian now contains an extra term with an
interlayer coupling, which does not commute withHLF . As a
result, if we want to rewrite the Loudon-Fleury Hamiltonian
for two layers using the projection operatorP, we necessar-
ily have to introduce an extra term which contains spins from

two differentplanes. Specifically, the Loudon-Fleury Hamil-
tonian expressed in terms of projection operators should
have the form

HLF5LB1 (
j ,d,a

P~ei ,ef ,d!Sa, j•Sa, j1d

1LA1(
j
P~ei ,ef ,0!S1,j•S2,j , ~19!

whereP(ei ,ef ,d) is the same as before. Here, the first term
describes scattering inB1g geometry, while the second term
~which couples spins from different layers! contributes to
A1g scattering. Comparing the two forms of the Loudon-
Fleury Hamiltonians, we obtain for the two coupling con-
stants

LA154t2F 2D

4D22V2GJ2J1 , LB1528t2F 2D

4D22V2G . ~20!

The two forms of the Loudon-Fleury Hamiltonian indeed
yield the same Raman matrix element as in Eq.~15!.

III. RAMAN INTENSITY
IN THE NONRESONANT REGIME

A. Noninteracting case

The Raman scattering cross section is proportional to the
Golden Rule transition rate29

R5
8p3e4

\3V2v iv f
( uMRu2d~\v i2\v f1e i2e f !, ~21!

where i and f are the initial and final states of the system,
e i , f are the corresponding energies, and the summation runs
over all possible initial and final electronic states. Let us first
neglect the final-state magnon-magnon interaction. Then,
e i2e f52V1(q), and using~10! we obtain for the Raman
intensity in theA1g andB1g channels~dropping an identical
overall prefactor!

I A1g~V!}2(
q

~MR
~1!!2d„\v i2\v f22V1~q!…

52L2(
q

S J2
4J1

D 2S 2J1~12nq!

V1~q! D 2
3d„\v i2\v f22V1~q!…,

I B1g~V!}2(
q

~MR
~1!!2d„\v i2\v f22V1~q!…

52L2S 11
J2
4J1

D 2(
q

S 2J1ñq

V1~q! D
2

3d„\v i2\v f22V1~q!…, ~22!

where V5v i2v f and we have defined
ñ q5(cosqx2cosqy)/2. We see that the Raman intensity in
the A1g channel is proportional to (J2 /J1)

2 and thus van-
ishes with vanishingJ2 . In B1g geometry, the changes in
I B1g imposed by the interlayer coupling are minor: The form
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of the matrix element is preserved and the only changes ap-
pear in the prefactor and in the magnon energy dispersion
V1(q). The momentum sums in Eq.~22! can be conve-
niently reduced to complete elliptic integrals. The resulting
expressions for the intensities are, however, rather involved;
they are collected in Appendix C. Here we discuss only the
main features of the Raman spectrum.

Our key observation is the following: The magnon energy
V1(q) is gapless at the zone centerq50, and has a gap
V1(Q)52AJ2J1 at q5Q. Then, for V5v i2v f
,2V1(Q), only magnons with momentum nearq'0 can be
excited. The numerators in both scattering geometries vanish
at q50, and it is not difficult to show that the contributions
from theq'0 region yieldI (V)}V3 ~see also below!. For
V.2V1(Q), however, also magnons withq'Q can be ex-
cited. In B1g geometry, the numerator inI B1g contains the

factor ñ q
2 which vanishes atq5Q such that the opening of a

new scattering channel does not cause substantial changes in
the intensity which still scales asV3. However, inA1g ge-
ometry the numerator inI A1g at q5Q is just a positive con-
stant. In this situation, the scattering intensity changes dras-
tically at V52V1(Q): Using Eq.~22!, we find

DI rel5
I A1g@2V1~Q!1dv#2I A1g@2V1~Q!2dv#

I A1g@2V1~Q!2dv#

5
256J1

4

@V1~Q!#4
. ~23!

For J2 /J150.1 we obtainDI rel;1600; i.e., the enhancement
of theA1g signal at the threshold frequency is very strong.

Moreover, the value of the intensity in theA1g channel
right above the threshold,I A1g}J2

2/V1(Q)}J1(J2 /J1)
3/2,

has the same order of magnitude as the intensity in theB1g
channel,I B1g}@V1(Q)#

3}(J2 /J1)
3/2. We found that for all

reasonable values forJ2 /J1 the ratio of intensities is
;1.721.9. In other words, if the Loudon-Fleury approxima-
tion is applicable, and if one claims to observe the two-
magnon profile inB1g geometry at aroundV1(Q), one
should also observe, in a two-layer system, the signal of an
even larger intensity in theA1g geometry.

The intensities for theA1g andB1g geometries without a
final-state interaction are plotted in Fig. 2 for two different
values ofJ2 /J1 . There are unphysical singularities in both
intensities at the maximum magnon energy, but just as in the
case of a single layer, they are artifacts of neglecting inter-
actions between magnons. We will see in Sec. III B that once
an interaction is included, the unphysical singularities are
removed.

B. Interacting case

We now analyze how the two-magnon profile changes
when the interaction between magnons is included. First of
all, the magnon-magnon interaction renormalizes the spin-
wave spectrum. To leading order in 1/S, which we only con-
sider here, this renormalization can be absorbed into the
renormalization of the exchange couplings

J1→J1S 11
r

2SD ,
r512

1

N(
q

~12nq!@4J1~11nq!1J2#

2V1~q!
,

J2→J2S 11
r 8

2SD , r 8512
1

N(
q

4J1~12nq!

2V1~q!
, ~24!

where the momentum sums run over the whole first Brillouin
zone~notice that we definedV1 without a factor of 2S). This
renormalization comes from one-loop diagrams~Oguchi
corrections30!. Beyond the leading order in 1/S, one has to
solve Eq.~24! self-consistently and also include corrections
with a higher number of loops. Numerically, however, it
turns out that the dominant correction, at least to order
1/S2, still comes from one-loop diagrams.31 In other words,
the actual magnon dispersion nearly preserves the same form
as in linear spin-wave theory, but contains renormalized cou-
pling constantsJ1,2. Below we will assume that this renor-
malization is already included in the definitions ofJ1,2 and
neglect it in our further consideration.

FIG. 2. The Raman intensities inA1g and B1g geometry ob-
tained in the Loudon-Fleury theory neglecting final-state magnon-
magnon interactions. The jump in the intensity in theA1g geometry
occurs at the frequency 2V1(Q)54(J2J1)

1/2. The overall shape of
the intensities is shifted towards higher frequencies with increasing
J2 /J1 .
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Strictly speaking, to justify this approximation for the cal-
culation of the effects due to a final-state magnon-magnon
interaction, we also have to prove that the dominant renor-
malization of the four-magnon interaction vertex can be ab-
sorbed into the same renormalization of the exchange inte-
grals. We did not perform explicit 1/S calculations for the
vertex. However, as the vertex itself has a factor 1/S in com-
parison to the magnon frequency, and all calculations involv-
ing magnon-magnon scattering will be performed only to the
leading order in 1/S, then whether to use a bare or a renor-
malized J1,2 in the vertex is beyond the accuracy of our
calculations. For simplicity, we will henceforth use renor-
malized values ofJ1,2 everywhere.

We now consider in detail the renormalization of the two-
magnon profile due to multiple scattering of two magnons.
The magnon-magnon vertices can be immediately obtained
from the Heisenberg Hamiltonian by applying, e.g., the
Holstein-Primakoff transformation to boson operators and a
subsequent canonical transformation to magnon operators
which diagonalize the quadratic part of the spin-wave Hamil-
tonian. A detailed study of the effects due to magnon-
magnon interactions in a single-layer antiferromagnet was
already performed by Canali and Girvin,11 and we follow
here their line of reasoning. To leading order in 1/S, we can
restrict ourselves to the scattering process which conserves
the number of magnons. The effective scattering Hamil-
tonian then takes the form

Hmag-mag5
1

N (
k,q

V~k,q!aq
†b2q

† akb2k , ~25!

with

V~k,q!5A
BkBq

V1~k!V1~q!
2Bq2kF A2

V1~k!V1~q!
11G ~26!

and

A5~J214J1!/2, Bk5~J214J1nk!/2. ~27!

In terms ofA and Bk the magnon dispersion is given by
V1(k)5AA22Bk

2.
In order to find the full vertex function for repeated two-

magnon scattering we need to sum an infinite series of ladder
diagrams. InB1g geometry, the ‘‘side’’ vertices from the
electron-photon coupling scale asg̃q5(cosqx2cosqy)/2, and
it is easy to see that the only term in Eq.~26! which contrib-
utes to scattering is the one withnq2k . The evaluation of the
ladder diagram series then proceeds exactly in the same way
as for a single-layer system.11,32 The analytical solution is
presented in Appendix D.

The plots for the Raman intensityI B1g for two values of

J2 /J1 are shown in Fig. 3. The unphysical singularity that
we found in the noninteracting case disappears, as expected,
and we observe a pronounced two-magnon peak. We see that
with increasingJ2 /J1 the two-magnon peak not only shifts
to higher frequencies but that the amplitude of the signal also
slightly increases. The latter, however, is mainly due to the
overall factor (11J2/4J1) in the matrix element and a renor-
malization of the Loudon-Fleury constantL from magnon-
magnon interactions. The shift of the peak position towards
higher frequencies can be understood in the simple picture

that the incoming photon flips two neighboring spins on the
same layer. This creates misaligned spin pairs and thereby
increases the total energy of the system. Evaluating the cor-
responding energy increase for a Ne´el state, we obtain a
two-magnon peak atV53J1(11J2/3J1) which is roughly
consistent with what we find.

In A1g geometry, the solution of the ladder series is more
difficult since the ‘‘side’’ vertex behaves as
;(12nq)/V1(q) where q is the magnon momentum. At
small q, this vertex scales linearly withq as a consequence
of the Adler principle:33 The Raman matrix element includes
the interaction between fermions and Goldstone bosons, and
this interaction should vanish at the points where the magnon
energy turns to zero. Because of the extra power of momen-
tum in MR , the Raman intensity without a final-state inter-
action scales asI A1g}V3 at very low frequencies, as men-
tioned before. However, the form of the ‘‘side’’ vertex in
A1g geometry isnot reproduced at the magnon-magnon ver-
tex, and we in fact have to solve a set of coupled integral
equations in order to get the result for the fullI A1g. The

explicit expression forI A1g is rather cumbersome, and so we
present it in Appendix D and here discuss only the key fea-
tures of the solution.

As the ‘‘side’’ vertices forA1g are invariant under trans-
formations of the symmetry groupD4h of the square lattice,
we can restrict ourselves to only that part of the scattering
potentialV(k,q), which has the same symmetry, i.e.,

V~k,q!522J1Fnknq1 J2
4J1

1
J2
4J1

S 11
J2
4J1

D
3

~2J1!
2~12nk!~12nq!

VqVk
G . ~28!

We see thatV(k,q) actually tends to a finite value for
k5q50. The cubic frequency dependence ofI A1g(V) is
therefore actually an artifact of neglecting the final-state in-
teraction. When this interaction is included,I A1g scaleslin-

early with V at the lowest frequencies. We also found that
the real part of the polarizability has a logarithmic singularity

FIG. 3. The Loudon-Fleury Raman intensity inB1g geometry
with a final-state interaction for two different values ofJ2 /J1 .
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at V52V1(Q). This singularity gives rise to two effects:
First, it makesI A1g a continuous function of frequency, in

other words, eliminates a jump in the intensity at 2V1(Q).
Second, it gives rise to a strong peak inI A1g at frequencies

somewhat smaller than 2V1(Q). Specifically, we found that
near 2V1(Q), the dominant contribution to the intensity
comes from the third term in Eq.~28!, andI A1g has the form

I A1g}J2
2

V1
3~Q!

~11R1!
21R2

2 1I A1G8 , ~29!

where

R15
J2

2pV1~Q!
ln
2V1~Q!2V

2V1~Q!
, R25

1

4

J2
J1

S V1~Q!

2J1
D 3.
~30!

I A1g8 remains finite atV52V1(Q) and is proportional to

J2
2/V1(Q). We see that there exists a very narrow peak in
I A1g located atV52V1(Q)$12exp@22pV1(Q)/J2#%. The

intensity right at the peak is very high,I A1g}1/V1
3(Q). At

small J2 , the peak position is exponentially close to
2V1(Q). However, at largerJ2 , we found numerically that
the peak is actually located at frequencies significantly
smaller than 2V1(Q). This last result agrees with the calcu-
lations of the two-magnon absorption profile in Ref. 20.

The solutions forI A1g for two different values ofJ2 /J1
are graphically presented in Fig. 4. TheA1g Raman spectra
have been evaluated on a finite lattice with 100031000 lat-
tice points. A finite imaginary partid has been added to the
energy denominators of the spin wave propagators in Eqs.
~54!, ~55!, and~56! in Appendix D. This allows us to study
the influence of damping on theA1g two-magnon spectra.
Without damping, the imaginary part of the polarizability has
a jump atV52V1(Q), and by the Kramers-Kronig relation,
the real part of polarizabiliy@R1 term in Eq.~30!# necessarily
has a logarithmic singularity; see Fig. 4~c!. With damping,
the singular behavior near the threshold frequency is re-
moved and the peak position is shifted closer to 2V1(Q).
Note also that, as inB1g geometry, the divergence at twice
the maximum spin-wave frequency is removed due to the
final-state magnon-magnon interaction.

Finally, for the purpose of comparison with experiments,
it is useful to compute the ratio of the Raman intensities for
A1g and B1g geometries right at their peak positions. We
found that this ratio is actually very small: ForJ2 /J150.1 it
is about 0.009, whereas forJ2 /J150.3, it is 0.044. In other
words, though theA1g intensity at the peak is larger than the
intensity of theB1g signal at the same frequency, the overall
scale of the peak is only a few percent of the two-magnon
peak inB1g geometry. We therefore have to conclude that in
the nonresonant regime where the Loudon-Fleury theory is
applicable, the extra peak inA1g geometry can hardly be
separated from the background signal. We now consider
what happens in the resonant regime, i.e., when the incident
photon frequency becomes comparable to the Mott-Hubbard
gap.

FIG. 4. The Loudon-Fleury Raman intensity inA1g geometry
with a final-state interaction.~a! for J2 /J150.2 and ~b! for
J2 /J150.4 include effects of magnon damping which were mod-
eled by adding a finite imaginary partid to the energy denomina-
tors of the spin-wave propagators. The transferred frequency in
these two figures is given in units of the maximum spin-wave fre-
quencyVmax. The low-frequency peak in the intensity is located at
a frequency somewhat smaller than 2V1(Q). With increasing
damping the peak frequency is gradually shifted closer to
2V1(Q). For comparison, in~c! we plotted the intensity for
J2 /J150.4 without any magnon damping.
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IV. THE RAMAN INTENSITY
IN THE RESONANT REGIME

In our derivation of the Loudon-Fleury Hamiltonian, we
have chosen the diagrams to leading order int/U under the
assumption that the energy of the incoming and outgoing
photons is much smaller than the energy gap between the
conduction and valence bands. Under these conditions, all
denominators in the diagrams Figs. 4~a!–4~c! in Ref. 12 were
of orderU which in turn allowed us to omit all diagrams
with intraband scattering. The situation, however, becomes
different in the resonant regime where the energy of the in-

coming photon comes close to the Mott-Hubbard gap,
2D;U. Actually, most of the experiments on two-magnon
Raman scattering in parent high-Tc compounds have been
done with visible light frequencies which are onlyO(J)
apart from 2D.

It was shown in Ref. 12 that in the resonant regime, the
diagrams with intraband scattering are more relevant than
those which contribute to the Loudon-Fleury theory, and,
moreover, the dominant contribution to Raman scattering
comes from just one diagram shown schematically in Fig. 5.
This diagram yields a Raman matrix element
MR

tr5MR
11MR

2 , where

MR
658i

1

N (
k,a,b

8
@~]ek /]ka!eia#@~]ek2q /]kb!efb#@mqek2q

6 2lqek
6#2

~v i22Ek
61 id!@v i2V1~q!2Ek

62Ek2q
6 1 id#~v f22Ek2q

6 1 id!
. ~31!

One of the key consequences of considering the resonance
regime is that there exists a nonzero signal inA1g geometry
even for a single layer. Indeed, the absence of theA1g signal
in the Loudon-Fleury theory was related to a particular form
of the interaction HamiltonianHLF which contained only
spin degrees of freedom. The inclusion of the intraband pro-
cesses modify the form of the interaction Hamiltonian with
light, in which case it no longer commutes with the Heisen-
berg Hamiltonian even whenei5ef5( x̂1 ŷ)/A2.

The feature of the diagram in Fig. 5 which makes it domi-
nant for B1g scattering in the resonance regime is that it
allows all three denominators to vanish simultaneously, lead-
ing to a triple-resonance enhancement.12 For two-layer sys-
tems, we should check whether or not the rapid variation of
I A1g near 2V1(Q) can be enhanced when the incident photon
frequency is tuned right to the triple-resonance value. We
performed computations analogous to those in Ref. 12 and
found that there is in fact no enhancement at the frequency
threshold forA1g scattering because the occurrence of the
triple resonance requires that the fermionic velocities at mo-
mentak0 @v i52E6(k0)# andk01q, whereq is the magnon
momentum, be antiparallel to each other. Forq5Q, we evi-
dently have¹kEk

6uk05¹kEk
6uk01Q ; i.e., the two velocities

areparallel. In this situation, the integration over the fermi-
onic momenta neark0 gives zero because all poles lie in the
same half-plane. We also performed more detailed calcula-
tions by expanding the denominators up to second order
aroundk0 . This actually makes the integral overk2k0 fi-
nite, but still there is no singularity inMR

tr at v i22Ek0
, and

so we do not expect any substantial enhancement of the Ra-
man intensity in theA1g channel due to a triple resonance.

Despite the absence of the enhancement, the diagram in
Fig. 5 is still relevant in the resonant regime simply because
it contains three denominators which all areO(J). Since
there is no resonant enhancement, then, to first approxima-
tion, one can just set the denominator in~31! to a constant
and consider the basic structure ofMR as imposed by the
interaction vertices between magnons and fermions. Per-
forming simple calculations, we obtained from~31!

MR
tr}S nqV1~q!1

J1J2
4

12nq
V1~q! D . ~32!

At small frequencies, the contributions to the Raman inten-
sity come only from magnon momenta nearq50. We see
from ~32! that for these momenta,MR

tr scales linearly with
the magnon momentum, just as we found in the Loudon-
Fleury approximation. Clearly then, the full Raman intensity
in the absence of a magnon-magnon interaction scales as
I A1g}V3 at small frequencies. We studied the effects of the
magnon-magnon interaction and found that, as before, the
bare form of the side vertex is not reproduced in a perturba-
tion theory for magnon-magnon scattering, and the finite-
state interaction gives rise to a linear, rather than cubic fre-
quency dependence ofI A1g. Moreover, asMR

tr does not

containJ2 as the overall factor, it obviously gives a domi-
nant contribution to I A1g. This in turn implies that at

V,2V1(Q), the Raman intensity in a double-layer system
is roughly half of the intensity in a one-layer system.

ForV.2V1(Q), magnon momenta nearq5Q also con-
tribute to I (V). It is not difficult to verify that this extra

FIG. 5. The ‘‘triple-resonance’’ diagram which gives the domi-
nant contribution to the Raman intensity in the resonant regime.
The notations are the same as in Fig. 4 of Ref.@12#.
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contribution has the same dependence onJ2 /J1 as in the
Loudon-Fleury theory. Accordingly, if we consider only
MR

tr , we obtain qualitatively the same form of theA1g inten-
sity profile as in the Loudon-Fleury theory — the only dif-
ference is that now the intensities below and above the jump
at 2V1(Q) are of the same order of magnitude. Our result
for the A1g intensity computed withMR

tr with a final-state
interaction is presented in Fig. 6. Qualitatively, the intensity
profile is the same as in the Loudon-Fleury approximation,
but the new features are a substantial increase in the intensity
above the threshold at 2V1(Q) and the flattening of the
A1g intensity slightly above the threshold frequency. There
may also be a very narrow peak slightly below the threshold
frequency~just as we obtained in the Loudon-Fleury theory!,
which we do not see because of a limited numerical accu-
racy. In any event, however, the singular behavior at this
peak is eliminated by damping.

The total matrix element for theA1g scattering is a sum of
Loudon-Fleury and triple-resonance contributions. Without
studying in detail the frequency dependence of the denomi-
nator in ~31! we cannot compare the overall strength of
MR

LF andMR
tr . In general, in the absence of the enhancement

due to an actual triple resonance, the two contributions
should have the same order of magnitude.12 Experimentally,
however, the overall intensity~and, to some extent, the form!
of theA1g Raman profile demonstrates a substantial depen-
dence on the incident photon frequency. Besides, as we
noted above, the Loudon-Fleury result for theA1g intensity
at the threshold is more than 1000 times smaller than the
B1g intensity at its maximum, while the experimental inten-
sity ratio is about 40 times smaller in the vicinity of the triple
resonance inB1g geometry, and even far smaller away from
the resonance. It is therefore very likely that the Loudon-
Fleury contribution to theA1g intensity is just a minor cor-
rection to the intensity given by the triple resonance diagram.
Notice also thatMR

LF has exactly the same form as the second

term inMR
tr , and its inclusion will just change the relative

strength of the two terms in~32!.

V. DISCUSSION

We first summarize our results. We considered in this
paper two-magnon Raman scattering in a two-layer Hubbard
model at half-filling. We applied the SDW formalism and
derived diagrammatically the Loudon-Fleury Hamiltonian
for the interaction between light and spin degrees of free-
dom. We found that in a two-layer system, the scattering in
A1g geometry is finite already in the Loudon-Fleury approxi-
mation. Without a final-state interaction, the intensity in this
channel scales asV3 at low frequencies. The magnon-
magnon interaction effects are numerically small, but never-
theless they change the frequency dependence toI A1g}V at
small frequencies. Furthermore, there is a very strong reso-
nance nearV54(J1J2)

1/2, when a second scattering channel
opens up. At resonance, the amplitude of theA1g signal is
larger than the amplitude of theB1g signal at the same fre-
quency. We also argued that in the resonance regime relevant

FIG. 7. Experimental Raman scattering data inx8x8 scattering
geometry for ~a! single-layer Sr2CuO2Cl2 and ~b! double-layer
YBa2Cu3O6.1 single crystals. The data are taken from Ref. 36.
Observe the flattening of the intensity in YBCO at around 1800
cm21. For both crystals, the excitation energyv i is 2D12.9J1 ~the
actual values are 2.33 and 2.09 eV correspondingly!. The con-
tinuum intensity at high frequencies is presumably due to multi-
magnon Raman scattering, and the sharp peaks at low energies are
due to resonant multiphonon scattering that becomes strongly en-
hanced for excitations close to 2D. The dashed line is a fit to a
linear 1 cubic frequency dependenceI}@c(v/J1)1(v/J1)

3#,
wherec51.6 for Sr2CuO2Cl2 and 1.3 for YBa2Cu3O6.1.

FIG. 6. The ‘‘triple-resonance’’ diagram contribution to the Ra-
man intensity inA1g geometry. The final-state interaction is in-
cluded, andJ2 /J150.1. Observe the flattening of the intensity
above the threshold. There should be~in the absence of damping! a
real jump at the threshold frequency — its smearing in the figure is
due to limited numerical accuracy.
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to experiments on parent high-Tc compounds, there is no
enhancement of the peak intensity inA1g geometry due to
the actual triple resonance. Nevertheless, the diagram with
three resonant denominators is dominant in this regime as it
yields a finiteA1g intensity even withoutJ2 .

In Fig. 7 we present the experimental data for theA1g
Raman intensity for single-layer Sr2CuO2Cl 2 and the
double-layer YBa2Cu3O6.1 compounds.36 We see that at
transferred frequenciesv>2000 cm21, the intensity profiles
in the two compounds are similar. The sharp peaks at the
low-energy tail of the two-magnon band are due to resonant
multiphonon scattering that becomes strongly enhanced for
excitations close to 2D. Despite the overall similarity of the
two figures, there are clear differences at low frequencies.
The intensity in a single-layer compound continues to de-
crease at frequencies smaller than the resonance frequencies
for phonon scattering, while the intensity for a two-layer
compound flattens at frequencies somewhat larger than the
resonance frequencies for phonon scattering, and remains flat
down to the smallest measured frequencies.

At the moment, we do not understand the origin of the
background contribution to the scattering in YBCO, but it is
unlikely that this background contribution is related to scat-
tering in a half-filled insulator. A more likely possibility is
that the background is due to the fact that the measured
YBCO compound has some finite amount of holes. In any
event, however, we see that the intensity flattens at about
1800 cm21

, and is rather flat at even lower frequencies.
This behavior is consistent with our result for the resonant

regime where the experiments have been performed: The
A1g intensity evaluated forJ250.1J1 flattens at about
1.8J1;1800 cm21

, and is roughly 2 times flatter at low fre-
quencies than in a single-layer compound. Indeed, the theory
also predicts that there should be a jump in the intensity at
the threshold frequency. However, if we associate the onset
of flattening with 1800 cm21

, we find that the jump occurs at
about 1200 cm21

, i.e., right at the frequencies where the
Raman signal is presumably dominated by phonon scatter-
ing, and so there are little chances to observe this jump di-

rectly. We therefore believe thatJ2;0.1J1 is a reasonable
though indirect estimate ofJ2 .

Notice thatJ2;0.1J1;150 K is consistent with the esti-
mate obtained from the analysis of the NMR data in similar
systems. More rigorously, we can place the upper bound on
possible values ofJ2 because whatever the interpretation of
the low-frequency measurements is, the data above 2000
cm21 clearly show no influence of the interlayer coupling.
This in turn implies that in any event, the threshold fre-
quency is lower than 2000 cm21

, or J2,0.25J1 . Even this
estimate is substantially smaller thanJ2;0.55J1 extracted
from the data of infrared transmission and reflection mea-
surements in YBCO.20 Given that inelastic neutron scattering
measurements were unable to detect the optical spin wave
branch in antiferromagnetic YBCO up to 60 meV, it was
argued17 that the gap 2(J1J2)

1/2, should be larger than 60
meV. We therefore conclude thatJ2 must be in the energy
range 8 meV,J2,30 meV.
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APPENDIX A: DERIVATION OF THE ENERGY
DISPERSIONS OF THE QUASIPARTICLE CONDUCTION

AND VALENCE BANDS

In this appendix we derive the dispersions for the valence
and conduction fermions in the one-band double-layer Hub-
bard model at half-filling. After Fourier transformation to
momentum space the Hubbard Hamiltonian, Eq.~1!, takes
the form

H5(
k,s

~24tnk!~ck,s
† ck,s1dk,s

† dk,s!2t8(
k

~ck,s
† dk,s1dk,s

† ck,s!

1
U

2N (
k,k8,q,s

~ck81q,s
† ck,2s

† c2k8,2sck1q,s1dk81q,s
† dk,2s

† d2k8,2sdk1q,s!. ~A1!

The presence of long-range antiferromagnetic SDW order in the ground state implies that

1

N(
k

^ck1p,↑
† ck,↑&52

1

N(
k

^ck1p,↓
† ck,↓&5mÞ0 ,

1

N(
k

^dk1p,↓
† dk,↓&52

1

N(
k

^dk1p,↑
† dk,↑&5m. ~A2!

Introducing the linear combinations

ak,s5
1

A2
~cks1dks!, bks5

1

A2
~cks2dks!, ~A3!
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and decoupling the interaction term with the expectation values of~A2!, the Hubbard Hamiltonian~A1! turns into

H5
1

N(
k,s

8 $~24tnk2t8!~ak,s
† ak,s2bk1p,s

† bk1p,s!2Umsgn~s!@ak,s
† bk1p,s1bk1p,s

† ak,s#

1~4tnk2t8!~ak1p,s
† ak1p,s2bk,s

† bk,s!2Umsgn~s!@ak1p,s
† bk,s1bk,s

† ak1p,s#%, ~A4!

where the primed momentum sum is restricted to the mag-
netic Brillouin zone. Two separate Bogolyubov transforma-
tions applied to the first and second parts of the Hamiltonian
~A4! yield two pairs of conduction and valence bands with
the dispersions 6Ek

156A(4tnk1t8)21D2 and
6Ek

256A(4tnk2t8)21D2. The self-consistency condition
for D5Um requires that

1

U
5

1

2N(
k

8 F 1

Ek
1 1

1

Ek
2G . ~A5!

APPENDIX B: TRANSVERSE SUSCEPTIBILITIES IN A
DOUBLE-LAYER ANTIFERROMAGNET

The dynamic, transverse spin susceptibility is obtained
from the time-ordered correlation function

xab
12~q,q8,t !5 i ^TSq,a

1 ~ t !S2q8,b
2

~0!&, ~B1!

where the indicesa,b51,2 denote the layer. In terms of
fermion operators the spin raising and lowering operators
Sq,a

6 are expressed through

Sq,15
1

N(
k

(
m,n

ck1q,m
† sW m,nck,n ,

Sq,25
1

N(
k

(
m,n

dk1q,m
† sW m,ndk,n , ~B2!

wheresW are the Pauli matrices and thec and d operators
describe the electrons from layers 1 and 2, respectively.
Summing the random phase approximation~RPA! ladder
diagram series for the transverse susceptibilities as described
in detail in the literature for a single-layer system24,34,35leads
to the results~for S51/2!

x11
12~q,q,v!52

J1~12nq!

v22V1
2~q!1 id

2
J1~12nq1J2/2J1!

v22V2
2~q!1 id

,

x11
12~q,q1Q,v!5

1

2 F v

v22V1
2~q!1 id

1
v

v22V2
2~q!1 idG ,

~B3!

when the spins are from the same layer@x11
12(q,q)

5x22
12(q,q) andx11

12(q,q1Q)52x22
12(q,q1Q)#, and

x12
12~q,q,v!52

J1~12nq!

v22V1
2~q!1 id

1
J1~12nq1J2/2J1!

v22V2
2~q!1 id

,

x12
12~q,q1Q,v!5

1

2 F v

v22V1
2~q!1 id

2
v

v22V2
2~q!1 idG ,

~B4!

when the spins are from different layers@x12
12(q,q)

5x21
12(q,q) and x12

12(q,q1Q)52x21
12(q,q1Q)#. The

poles of the susceptibilities are atV1(q) and
V2(q)[V1(q1Q), as they should. Using these results, one
can construct the effective Hamiltonian for the magnon-
fermion interaction, Eq.~7!, by the requirement that it repro-
duce the forms of all these susceptibilities.

APPENDIX C: RAMAN INTENSITIES WITHOUT A
MAGNON-MAGNON INTERACTION

In this appendix we present the closed forms ofI A1g and

I B1g without a final-state magnon-magnon interaction. The
actual calculations have been performed to leading order in
1/S. Here, we present the results forS51/2. We introduce
the short notationṼ5V/2J1 and

a5
~16t2!2

J1p
2\ F 2D

4D22V2

J2
4J1

G2, b5
~16t2!2

J1p
2\ F 2D

4D22V2G2S 11
J2
4J1

D ,

t15
12n1

11n1
, t25

11n2

12n2
, g~Ṽ!5

1

2Ṽ

1

A~11J2/4J1!
22Ṽ2/4

, ~C1!
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wheren1,252(J2/4J1)6A@11J2/4J1)]
22Ṽ2/4 .

For A1g scattering geometry we then obtain,
~i! for 0<Ṽ<2AJ2 /J1,

I A1g~V!5ag~Ṽ!
~12n1!2

11n1
K~ t1!, ~C2!

whereK is the complete elliptic integral of the first kind;
~ii ! for 2AJ2 /J1<Ṽ<2A11J2/2J1 ,

I A1g~V!5ag~Ṽ!H ~12n1!2

11n1
K~ t1!1~12n2!K~ t2!J ;

~C3!

~iii ! for 2A11J2/2J1<Ṽ<2(11J2/4J1),

I A1g~V!5ag~Ṽ!$~12n1!K~ t1!1~12n2!K~ t2!%. ~C4!

For B1g scattering geometry we obtain,
~i! for 0<Ṽ<2AJ2 /J1,

I B1g~V!5bg~Ṽ!~11n1!@K~ t1!2E~ t1!#, ~C5!

whereE is the complete elliptic integral of the second kind;
~ii ! for 2AJ2 /J1<Ṽ<2A11J2/2J1,

I B1g~V!5bg~Ṽ!$~11n1!@K~ t1!2E~ t1!#

1~12n2!@K~ t2!2E~ t2!#%; ~C6!

~iii ! for 2A11J2/2J1<Ṽ<2(11J2/4J1),

I B1g~V!5bg~Ṽ!$~12n1!@K~ t1!2E~ t1!#

1~12n2!@K~ t2!2E~ t2!#%. ~C7!

APPENDIX D: RAMAN INTENSITY
WITH A MAGNON-MAGNON INTERACTION

In this appendix we outline our calculations of the full
Raman intensity with a final-state interaction. Considering
repeated two-magnon scattering we sum the corresponding
series of ladder diagrams~see, e.g., Ref. 11!. The resulting
integral equation for the full vertex function reduces to a set
of algebraic equations which allows for an explicit solution.
We skip the details and list here only the results.

For the Raman intensity inA1g geometry we obtain

I A1g~V!}Im
a~V!

11~g/2!a~V!
, ~D1!

where

g5J2~4J1!
2S 11

J2
4J1

D ,
a~V!5P~2!~V!12J1FR~1!~V!E~V!1

J2
4J1

P~1!~V!A~V!G .
~D2!

Here we defined

A~V!5
2P~1!~V!1R~1!~V!H~V!

11 1
2 J2@P

~0!~V!2R~0!~V!H~V!#
, ~D3!

H~V!5
2J1R

~0!~V!

112J1Q~V!
, ~D4!

E~V!52

1
2 J2R

~0!~V!A~V!1R~1!~V!

112J1Q~V!
, ~D5!

and also

P~m!~V!5
i

N(
q
E dv

2p S 12nq
V1~q! D

m

G0~q,V1v!

3G0~2q,2v!

5
1

N(
q

S 12nq
V1~q! D

m 1

V22V1~q!1 id
,

~D6!

R~m!~V!5
i

N(
q
E dv

2p S 12nq
V1~q! D

m

nqG0~q,V1v!

3G0~2q,2v!

5
1

N(
q

S 12nq
V1~q! D

m nq
V22V1~q!1 id

,

~D7!

Q~V!5
i

N(
q
E dv

2p
nq
2G0~q,V1v!G0~2q,2v!

5
1

N(
q

nq
2

V22V1~q!1 id
, ~D8!

whereG0(q,v)5@v2V1(q)1 id#21 is the noninteracting
spin-wave propagator.

For B1g geometry we find

I B1g~V!} Im
L ~2!~V!24J1@L

~1!~V!L ~1!~V!2L ~0!~V!L ~2!~V!#

114J1L
~0!~V!116J1

2~J214J1!
2$L ~0!~V!L ~2!~V!2L ~1!~V!L ~1!~V!1@L ~2!~V!/4J1#%

, ~D9!

where

L ~m!~V!5
i

N(
q
E dv

2p

ñ q
2

V1
m~q!

G0~q,V1v!G0~2q,2v!

5
1

N(
q

ñ q
2

V1
m~q!

1

V22V1~q!1 id
. ~D10!

This form is similar to the result for a single layer. The plots of the full intensities are presented in Figs. 3 and 4.
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