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We compare the theoretical predictions of the previous paper on the field dependence of the magnetic
spectrum in anisotropic two-dimensional and Dzyaloshinskii-Moriya layered antiferromagnets �L. Benfatto and
M. B. Silva Neto, Phys. Rev. B 74, 024415 �2006��, with Raman spectroscopy experiments in Sr2CuO2Cl2 and
untwinned La2CuO4 single crystals. We start by discussing the crystal structure and constructing the magnetic
point group for the magnetically ordered phase of the two compounds, Sr2CuO2Cl2 and La2CuO4. We find that
the magnetic point group in the ordered phase is the m� mm� orthorhombic group, in both cases. Furthermore, we
classify all the Raman active one-magnon excitations according to the irreducible co-representations for the
associated magnetic point group. We find that the in-plane �or Dzyaloshinskii-Moriya� mode belongs to the
DAg co-representation while the out-of-plane �XY� mode belongs to the DBg co-representation. We then
measure and fully characterize the evolution of the one-magnon Raman energies and intensities for low and
moderate magnetic fields along the three crystallographic directions. In the case of La2CuO4, a weak-
ferromagnetic transition is observed for a magnetic field perpendicular to the CuO2 layers. We demonstrate that
from the jump of the Dzyaloshinskii-Moriya gap at the critical magnetic field Hc�6.6 T one can determine the
value of the interlayer coupling J� /J�3.2�10−5, in good agreement with previous estimates. We furthermore
determine the components of the anisotropic gyromagnetic tensor as gs

a=2.0, gs
b=2.08, and the upper bound

gs
c=2.65, also in very good agreement with earlier estimates from magnetic susceptibility. For the case of

Sr2CuO2Cl2, we compare the Raman data obtained in an in-plane magnetic field with previous magnon-gap
measurements done by electron spin resonance �ESR�. Using the very low magnon gap estimated by ESR
��0.05 meV�, the data for the one-magnon Raman energies agree reasonably well with the theoretical predic-
tions for the case of a transverse field �only hardening of the gap�. On the other hand, an independent fit of the
Raman data provides an estimate for gs�1.98 and gives a value for the in-plane gap larger than the one
measured by ESR. Finally, because of the absence of the Dzyaloshinskii-Moriya interaction in Sr2CuO2Cl2, no
field-induced modes are observed for magnetic fields parallel to the CuO2 layers in the Raman geometries
used, in contrast to the situation in La2CuO4.

DOI: 10.1103/PhysRevB.74.024416 PACS number�s�: 75.50.Ee, 75.10.Jm, 75.30.Cr, 78.30.�j

I. INTRODUCTION

In the preceding paper,1 we investigated the field depen-
dence of the magnetic spectrum in anisotropic two-
dimensional and Dzyaloshinskii-Moriya layered antiferro-
magnets. The first case is relevant to the understanding of the
magnetic properties of Sr2CuO2Cl2, which is a body-
centered-tetragonal S=1/2 antiferromagnet2 with I4/mmm
structure3 and D4h point group in the paramagnetic phase,
T�TN. Because of its tetragonal character, at the classical
level there should be no in-plane anisotropies present in
Sr2CuO2Cl2. Furthermore, because of its body-centered
structure, J� is strongly frustrated.4 However, such perfect
frustration can be removed by quantum fluctuations due to
the spin-orbit interaction, and indeed a small in-plane aniso-
tropy is present in Sr2CuO2Cl2,5 determining a spin easy axis
at low temperatures, and giving rise to a very small in-plane
spin gap.6 For this reason, the magnetism in Sr2CuO2Cl2 can
be fairly well described by the following two-dimensional
square-lattice spin Hamiltonian:

Hcon = �
	i,j


JSi
bSj

b + �J − �a�Si
aSj

a + �J − �c�Si
cSj

c. �1�

In the above expression, Si
a,b,c are the components along the

crystallographic axes a ,b ,c �see Fig. 1� of the Cu++ spin, J is
the planar antiferromagnetic superexchange, and �a and �c
are, respectively, parameters that control the in-plane and XY
anisotropies. It should be emphasized here, once more, that
at the classical level �a=0 because the crystal structure is
body-centered tetragonal.7 A nonzero �a can, however, be
effectively obtained once quantum fluctuations �mostly from
the spin-orbit coupling�, which lift the frustration, are taken
into account by considering the mean-field effect of the
neighboring layers.4

Conversely, any realistic model for the magnetism of
La2CuO4 that takes into account the tilting of the oxygen
octahedra should incorporate both a Dzyaloshinskii-Moriya
�DM� interaction and also the interlayer coupling J��0.8 In
the low-temperature orthorhombic phase of La2CuO4, T
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�530 K, the crystal has the Bmab structure with the D2h
point group in the paramagnetic phase, T�TN. The full
Hamiltonian that incorporates the Dzyaloshinskii-Moriya
and XY interactions allowed by symmetry, as well as the
interlayer coupling, reads

H = J��
m

Sm · Sm+1 + �
m

Hsl�Sm,Dm� , �2�

where Sm and Dm represent, respectively, the Cu++ spins and
Dzyaloshinskii-Moriya vectors at a generic lattice position
�i , j� of the mth layer. The sum is over the Hamiltonian for a
single layer

Hsl�S,D� = J�
	i,j


Si · S j + �
	i,j


Dij · �Si � S j� + �
	i,j


Si · �I ij · S j ,

�3�

where Dij and �I ij are, respectively, the DM and XY aniso-
tropic interaction terms that arise due to the spin-orbit cou-
pling and direct exchange in the low-temperature orthorhom-
bic �LTO� phase of La2CuO4 �see Fig. 2 and the preceding
paper for a proper definition of these quantities�. It should be
noted here that due to the peculiar staggered pattern of the
tilting angle of the oxygen octahedra in neighboring layers,
the Dzyaloshinskii-Moriya vector alternates in sign from one
layer to the other, DAB,AC

m = �−1�mDAB,AC. Moreover, since the
unit cell is body centered, the coupling J� in Eq. �2� con-
nects the spin at position �0,0,0� to the one at �1/2 ,0 ,1 /2� in
the LTO coordinate system �see also Fig. 3�.

As it has been discussed extensively in the preceding
article,1 the DM interaction leads to a quite unconventional
response of the system to an external magnetic field. Indeed,
due to the DM interaction the spins develop small out-of-
plane ferromagnetic moments along with the staggered ones
characteristic of the AF order, which in turn couple to the

external field leading, for example, to unusual magnetic sus-
ceptibility anisotropies, as measured at small fields in
La2CuO4.9,12–14 At larger field values one can observe a fer-
romagnetic ordering of these moments along the c axis for
magnetic fields applied perpendicular to the CuO2 layers,9–11

or to a two-step spin-flop of the staggered moments for an
applied in-plane field.10,11 This physical picture, which was
discussed in the previous work of Refs. 8–11, has been con-
firmed by the calculations reported in Ref. 1, where addi-
tional results concerning the �H ,T� phase diagram and Ra-
man response at finite magnetic field have been discussed.
This same approach turned out to be quite successful re-
cently in demonstrating that the Dzyaloshinskii-Moriya inter-
action is behind the appearance of a field-induced mode in

FIG. 1. Tetragonal magnetic unit cell of Sr2CuO2Cl2 for T
�TN �only Cu++, O−−, and Cl− ions are shown for clarity�. For the
sake of unifying notations between Sr2CuO2Cl2 and La2CuO4, in
what follows we shall use the �abc� coordinate system above where
a �x�, b � y�, and c � z. Since the crystal structure is tetragonal, we
have a=b�c. The Cu++ spins are confined to the �ab� plane �CuO2

layers� and are oriented along the �1̄10� direction in the �xyz� coor-
dinate system, or, equivalently, parallel to the b axis. In the para-
magnetic phase, the point group is the I4/mmm tetragonal group,
but, as we shall discuss soon, below TN the symmetry is lowered
because of the antiferromagnetic ordering of the spins.

FIG. 2. Left: filled �small� circles represent the Cu++ ions. The
hatched larger circles represent the oxygen O−− ions that are tilted
above the CuO2 layer while the open larger circles are O−− ions that
are tilted below the CuO2 layer, see also Fig. 3. Right: the staggered
pattern of the Dzyaloshinskii-Moriya vectors, represented by open
arrows along the Cu-Cu bonds, follows from the staggered pattern
of the tilting of the oxygen octahedra. Small arrow: in-plane pro-
jection of the Cu++ spins in the ordered phase.

FIG. 3. Orthorhombic magnetic unit cell of La2CuO4 for T
�TN �only Cu++ and O−− ions—except the apical ones—are shown
for clarity�. We use the �abc� orthorhombic coordinate system,
where a�b�c. The Cu++ ions order antiferromagnetically parallel
to the b orthorhombic axis but are also canted out of each CuO2

layer, and are thus confined to the �bc� plane. Observe that the
canting pattern is staggered along the c orthorhombic direction.
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the one-magnon Raman spectrum in La2CuO4 for longitudi-
nal magnetic fields, as a consequence of a rotation of the
spin-quantization basis which was first suggested in Ref. 15,
theoretically explained in Ref. 16, and quite recently ob-
served in neutron diffraction in Ref. 17. Thus the purpose of
the present paper is to directly compare the one-magnon
spectrum measured in both La2CuO4 and Sr2CuO2Cl2 with
the calculations presented in Ref. 1, as far as both the posi-
tion and intensity of the Raman peak is concerned. As we
shall see, the excellent agreement between the theory and the
experiments allows from one side to establish on firmer
grounds the general picture of the anomalous effect of the
DM interaction in the La2CuO4 system, and from the other
side to estimate some relevant physical quantities as the spin
gyromagnetic ratio.

II. MAGNETIC GROUP ANALYSIS FOR La2CuO4 AND
Sr2CuO2Cl2

Before introducing the experimental setup, a preliminary
discussion is needed about the point group of La2CuO4 and
Sr2CuO2Cl2, both in the paramagnetic and antiferromagnetic
phases, in order to establish the irreducible co-
representations of the Raman tensors. While the paramag-
netic case has been already extensively discussed in the lit-
erature �see, for example, Ref. 17 and references therein�, a
discussion of the magnetic phase is still missing, and we
shall briefly review here the basic steps needed to make this
analysis.

Let us consider a crystal with a certain symmetry group G
and its set of allowed symmetry group operations in the para-
magnetic phase, T�TN. When the system orders antiferro-
magnetically, T�TN, usually the symmetry is lowered be-
cause now not all the sites are equivalent, and the
corresponding magnetic group must be determined.18 In gen-
eral, two situations can occur:

�i� Let us call H the restricted unitary subgroup of G
containing the symmetry operations still allowed below TN.
If H is a subgroup of G of index 2 �i.e., H contains exactly
n /2 elements of G� then all the remaining elements of G
−H can, nevertheless, be promoted to allowed symmetry op-
erations when combined with the time-reversal operation �,
and are thus called antiunitary elements. One can then iden-
tify, for T�TN, the magnetic point group corresponding to
the classical point group G as

M = H + ��G − H� . �4�

�ii� However, it is possible that below TN the unitary op-
erations still allowed form a subgroup H of index larger than
2 for G, but corresponding to a subgroup of index 2 of a
different classical group G �i.e., H contains r /2�n /2 ele-
ments, where r is the dimension of the group G�. In this case
the magnetic group is identified by H and the antiunitary
group ��G−H�, so that

M = H + ��G − H� . �5�

A. Magnetic point group for La2CuO4

The crystal structure of the low-temperature orthorhombic
phase of La2CuO4 is the Bmab structure in Fig. 3, which has

as unitary group the D2h point group in the paramagnetic
phase T�TN. Above the Néel ordering temperature the al-
lowed symmetry operations of the D2h group are

D2h = 1, 1̄, 2a, 2b, 2c, 2̄a, 2̄b, 2̄c, �6�

where the eight elements have their usual meanings:18 1

=identity; 1̄= inversion through the symmetry center, which
is in this case the central Cu++ ion in position 2 of Fig. 2, so
that �a ,b ,c�→ �−a ,−b ,−c�; nz=rotation of 2� /n around the
z axis; n̄z=inversion through the symmetry center followed

by a 2� /n rotation around the z axis �note that 2̄z corre-
sponds also to a reflection with a mirror perpendicular to the
z axis�.

Although it may seem at first that neither 2b nor 2c are
symmetry operations, in both cases the final atomic configu-
rations can be brought back to the original one by a transla-
tion of half of the diagonal along the �011� direction �in the
�abc� coordinate system�. In this sense, the octahedra in po-
sition 1 �front-bottom-left corner� is brought to position 2
�central ion� and the one from position 2 is brought to posi-
tion 3 �back-top-right corner�. Such translation is allowed
because there is no way to distinguish the corner and central
Cu++ ions in the crystal.

Below TN, the Cu++ ions order antiferromagnetically in
the pattern shown in Fig. 3. We can verify that the remaining
allowed unitary symmetry operations are

H = 1, 1̄, 2b, 2̄b,

bearing in mind that a half translation along the �011� diag-
onal is allowed. We immediately conclude that La2CuO4 be-
longs to the case �a� discussed above, where the subgroup of
allowed unitary operations is of index 2, see Eq. �4�. We can
now construct the magnetic group of the ordered phase of
La2CuO4 by combining all the G−H unitary operations that
are not allowed below TN with the time-reversal operation �
�represented in what follows by an underline�, thus forming
antiunitary operations. The allowed unitary+antiunitary op-
erations for La2CuO4 below TN are

M = H + ��G − H� = 1, 1̄, 2�a, 2b, 2� c, 2�a, 2̄b, 2� c, �7�

such that the magnetic point group for La2CuO4 below TN is
the

M = m� mm�

orthorhombic group, which also has eight elements. The Ra-
man tensors for such a magnetic group are given in terms of
the co-representations �see Ref. 19�

DAg = � A iB 0

iD E 0

0 0 I
�, DBg = � 0 0 C

0 0 iF

G iH 0
� , �8�

where A, B, C, D, E, F, G, H, I are unconstrained real num-
bers.

B. Magnetic point group for Sr2CuO2Cl2

The crystal structure of the high-temperature tetragonal
�HTT� phase of Sr2CuO2Cl2 is the I4/mmm structure in Fig.

FIELD DEPENDENCE OF THE¼ . II. ¼ PHYSICAL REVIEW B 74, 024416 �2006�

024416-3



1, which has as unitary group the D4h point group in the
paramagnetic phase T�TN. Above the Néel ordering tem-
perature the 16 allowed symmetry operations of the D4h
group are18

D4h = 1, 1̄, 2x, 2y, 2z, 2x�, 2y�, 2̄x, 2̄y, 2̄z, 2̄x�, 2̄y�,

± 4z, ± 4̄z,

where we used the reference system of Fig. 1. As we can see,
the tetragonal character of the unit cell allows for a fourfold
axis, the c axis, which is perpendicular to the CuO2 planes
�see Fig. 1�.

In the antiferromagnetic phase the spin easy axis is along
the y� or �010� direction in the �abc� coordinate system, see
Fig. 1. Thus one can easily verify that, below TN, 2x, 2y, and
±4z are no longer symmetry operations, not even when
supplemented by the time-reversal operation �. The only al-
lowed unitary operations in the Néel ordered phase of
Sr2CuO2Cl2 are

H = 1, 1̄, 2y�, 2̄y�,

again bearing in mind that a half translation along the �011�
diagonal is allowed. We immediately conclude that
Sr2CuO2Cl2 belongs to the case �b� discussed above, as in
Eq. �5�, where the subgroup H of allowed unitary operations
is a subgroup of D4h with index larger than 2, but it is a
subgroup of G=D2h �mmm� with index 2. We can now con-
struct the magnetic group of the ordered phase of
Sr2CuO2Cl2 by combining all the G−H unitary operations
that are not allowed below TN with the time-reversal opera-
tion �, thus forming antiunitary operations. The allowed
unitary+antiunitary operations for Sr2CuO2Cl2 below TN are

M = H + ��G − H� = 1, 1̄, 2� x�, 2y�, 2� z, 2� x�, 2̄y�, 2� z, �9�

and thus the magnetic group, with only eight elements, is
again the orthorhombic m� mm� group, just like the case of
La2CuO4.20 In fact, when expressed in terms of the �abc�
coordinate system of Fig. 1, such that a �x�, b � y�, and c � z,
Eq. �9� can be written

M = 1, 1̄, 2�a, 2b, 2� c, 2�a, 2̄b, 2� c,

which coincides with Eq. �7� above. Thus to unify the nota-
tion we shall use in the following the �abc� coordinate sys-
tem for both La2CuO4 and Sr2CuO2Cl2 while discussing the
antiferromagnetic phase. Moreover, since the magnetic group
is the same, the Raman tensors are given by Eq. �8� for both
systems.

III. INELASTIC LIGHT SCATTERING BY MAGNONS IN
La2CuO4 AND Sr2CuO2Cl2

One of the possible mechanisms for the inelastic scatter-
ing of light by magnetic excitations in crystals is an indirect
electric-dipole �ED� coupling via the spin-orbit interaction.21

Such a mechanism has been in fact used to determine the
spectrum of magnetic excitations in many different
condensed-matter systems like fluorides, XF2, where X is

Mn2+, Fe2+, or Co2+,21 inorganic spin-Peirls compounds,
CuGeO3,22 and the parent compounds of the high-
temperature superconductors.15 The Hamiltonian represent-
ing the interaction of light with magnons can be written quite
generally as23

HED = �
r

ES
T��r�EI,

where ES and EI are the electric fields of the scattered and
incident radiation, respectively �aT is the transposed of the a
vector� and ��r� is the spin dependent susceptibility tensor.
We can expand ��r� in powers of the spin operators S as

��	�r� = �0
�	�r� + �




K�	
S
�r� + �

�

G�	
�S
�r�S��r� + ¯ ,

where 
 ,�=x ,y ,z label the spin components. The lowest
order term �0

�	�r� is just the susceptibility in the absence of
any magnetic excitation �it corresponds to elastic scattering�,
and it will be neglected in what follows. The second and
third terms can give rise to one-magnon excitations because
they can be written as S±�r� and Sz�r�S±�r�, respectively,
where z is the direction of the spin easy axis. The intensity of
the scattering, as well as the selection rules, will be deter-
mined by the structure and symmetry properties of the com-
plex tensors K and G.

The ED Hamiltonian that describes the k=0 one-magnon
absorption or emission on sublattice A or B can now be
written in terms of the x ,y ,z components of the sublattice
magnetization, Mi= �SiA

−SiB
� /2, as

HED = �
i


ES
T�xEIMi

x + ES
T�yEIMi

y� , �10�

where the matrices � x and �y are both written in terms of the
original K and G tensors. Here we made the usual mean-field
assumption 	SiA

z 
=−	SiB
z 
=−S and we dropped terms of the

type SiA
x,y +SiB

x,y since these do not contribute for the k=0 scat-
tering.

A. Magnetic excitations and selection rules for La2CuO4 and
Sr2CuO2Cl2

It is very important to emphasize here that, differently
from two-magnon Raman scattering, where the Raman re-
sponse does not depend on the direction of the spin easy
axis, the one-magnon Raman response does. Indeed, it has
been shown by Fleury and Loudon21 that one of the incom-
ing or outgoing components of the electric field must always
lie in the direction of the easy axis, and the other one in the
perpendicular plane, oriented in the direction of the mode
that one wants to probe. In the specific case of La2CuO4 and
Sr2CuO2Cl2 that we are considering, the easy axis is along b.
Thus the only nonvanishing matrix elements for �x��a,
which corresponds to the in-plane or a �DM� mode, are those
that mix the spin easy axis, b, with a, while for �y ��c,
which corresponds to the out-of-plane or c �XY� mode, are
those that mix b and c. This information allows us to estab-
lish �i� to which magnetic-group co-representation the one-
magnon modes belong, and �ii� the precise scattering geom-
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etries needed to observe the associated one-magnon Raman
modes. For example, it tells us that, for either Sr2CuO2Cl2 or
La2CuO4, the out-of-plane mode �also referred to as the XY
mode6,15� belongs to the DBg co-representation of the mag-
netic point group m� mm� ,

� c � �XY = �0 0 0

0 0 iF

0 iH 0
� , �11�

with C=G=0. On the other hand, the in-plane mode �also
referred to as the DM mode for La2CuO4 �Refs. 15 and 16��
belongs to the DAg co-representation of the magnetic point
group m� mm� ,

� a � �DM = � 0 iB 0

iD 0 0

0 0 0
� , �12�

with A=E= I=0. The precise numerical evaluation of the re-
maining elements B, D, F, H requires a more detailed micro-
scopic calculation of the electric-dipole induced transitions
and spin-orbit coupling in second-order perturbation theory,
for each system, and this is beyond the scope of this paper.

B. One-magnon Raman response

According to the electric-dipole Hamiltonian �10�, one-
magnon Raman scattering probes the long-wavelength spin
excitations Mi around the staggered spin configuration real-
ized in the antiferromagnetic state. These correspond to the
�k=0� value of the usual spin-wave dispersions, where k is
measured with respect to the Q= �� ,�� vector of the antifer-
romagnetic ordering. In an isotropic Heisenberg antiferro-
magnet the spin modes are soft at long wavelength, �k�ck,
but for anisotropic spin-spin interactions a gap appears at k
=0, �k=��a,c

2 +c2k2, where �a,c are related to the anisotropy
parameters ��a ,�c in Eq. �1�, or to D+ ,
 in Eq. �3��. Starting
from the Hamiltonian �10�, the Raman response can be ob-
tained using Fermi’s golden rule and, for Stokes scattering,
we have16

I��� = �nB��� + 1�
��a�2Aa�0,�� + ��c�2Ac�0,��� ,

�13�

where I��� is the Raman intensity, nB���= �e	�−1�−1 is the
Bose function and Aa,c�0 ,�� is the spectral function of the
k=0 transverse a /c components of the antiferromagnetic
�staggered� order parameter. The projectors

�a,c = ES
T�a,cEI �14�

are given in terms of the Raman tensors �a,c presented above.
The properties of Aa,c have been extensively discussed in the
preceding paper.1 In particular, it has been shown that the
spectral function Aa,c�0 ,�� is peaked at the energy �a,c�H�
of the magnon gaps in magnetic field, with an intensity Ia,c
which also depends on H. For La2CuO4, �a corresponds to
the Dzyaloshinskii-Moriya gap, while for Sr2CuO2Cl2 it cor-
responds to the in-plane gap, as discussed in the Introduc-
tion. For both compounds, �c corresponds to the XY aniso-
tropy gap.

IV. EXPERIMENTAL SETUP

Single crystals of La2CuO4 and Sr2CuO2Cl2 �Ref. 24�
were measured in a backscattering geometry with the incom-
ing photons propagating along the c crystallographic axis.
The polarization configurations are denoted by �EI ,ES� with
EI/S representing the direction of the incoming or scattered
electric field. The crystals were mounted in a continuous
flow optical cryostat and the Raman spectra were taken using
about 5 mW power and the wavelength �=647.1 nm from a
Kr+ laser. The measurements in magnetic fields were taken
with the cryostat inserted in a room-temperature horizontal
bore of a superconducting magnet. The orthorhombic axes of
the La2CuO4 sample were identified by x-ray diffraction. The
data from Sr2CuO2Cl2 crystal were taken from a freshly
cleaved �ab� surface but in this case the in-plane axes direc-
tions were not determined.

We first present the one-magnon Raman response in
La2CuO4 for the �RL� polarization configuration. In this ge-
ometry, the electric field of the incident light is circularly
polarized rotating clockwise, EI

R= �x̂a− ix̂b� /�2, while the
electric field of the scattered light is circularly polarized and
rotating anticlockwise, ES

L= �x̂a+ ix̂b� /�2. Here x̂a and x̂b are
unit vectors along the a and b directions, respectively. Ac-
cording to our earlier discussion on the classification of the
magnetic excitations in La2CuO4, the �RL� in-plane polariza-
tion configuration is the adequate Raman geometry in order
to observe the Dzyaloshinskii-Moriya gap, because it probes
directly the nonvanishing element B, D of the �DM matrix
�12�. The results are presented in Fig. 4. In �a� the magnetic
field is applied along the a axis �transverse field�. We ob-
served a monotonic hardening of the gap with increasing
magnetic field. In �b� the magnetic field is applied along the
b axis �longitudinal field�. We observed a monotonic soften-
ing of the gap with increasing magnetic field. Finally, in �c�
the magnetic field is applied perpendicular to the CuO2 lay-
ers �transverse field�. We observed first a softening of the gap
with increasing field, a jump at a field of approximately
6.6 T, and finally a hardening with increasing field.

Next we present the one-magnon Raman response in
La2CuO4 for the �RR� polarization configuration. In this ge-

FIG. 4. �Color online� One-magnon Raman response for
La2CuO4 at T=10 K in the �RL� circular polarization configuration,
where only the Dzyaloshinskii-Moriya gap is Raman active. In �a�
the gap only hardens, in �b� the gap only softens, while in �c� it first
softens and then hardens above the weak-ferromagnetic transition at
H�6.6 T �see discussion in the text�.
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ometry, the electric field of both the incident and scattered
light is circularly polarized rotating anticlockwise, EI

R=ES
R

= �x̂a+ ix̂b� /�2. According to the theory described in Ref. 16,
the �RR� in-plane polarization configuration is the adequate
Raman geometry in order to observe the field-induced mode
for a magnetic field applied along the orthorhombic b easy
axis, because it probes directly the nonvanishing elements of
the rotated ��

XY matrix

��
XY = �0 0 0

0 i�F + H�sin � cos � − iH sin2 � + iF cos2 �

0 − iF sin2 � + iH cos2 � − i�F + H�sin � cos �
� ,

�15�

where � is the angle of rotation of the spin-quantization basis
within the �bc� plane.16 The �RR� polarization configuration
then probes the element i�F+H�sin � cos �. The results are
presented in Fig. 5 and we observed a monotonic hardening
of the gap with increasing magnetic field. Only the data
points for higher fields are shown in Fig. 5 because the in-
tensity of the peak rapidly drops for fields lower than 4 T.

Finally we present the one-magnon Raman response in
Sr2CuO2Cl2 also for the �RL� polarization configuration. The
results are presented in Fig. 6. First, we observe that at zero
applied field the Raman spectrum is continuously increasing
up to the lowest accessible frequency of 2 cm−1. As a con-
sequence, we can only establish an upper bound of 2 cm−1

for the in-plane magnon gap. This very small value is con-
sistent with the general expectation that the in-plane gap for
Sr2CuO2Cl2 has a purely quantum origin. When the magnetic
field is in the plane �main panel� one observes a hardening of

the one-magnon peak, which allows us to clearly identify the
magnon gap as the field increases, while no changes are ob-
served for a magnetic field parallel to c �bottom inset�. Ob-
serve also �top inset� that the signal corresponding to the
two-magnon continuum �which starts at the edge of approxi-
mately twice the magnon gap� has much lower intensity with
respect to the one-magnon peak.

V. MAGNETIC SPECTRUM IN La2CuO4

A. H parallel to a

For a field applied parallel to the a orthorhombic axis, we
obtain the conventional field dependence of the magnon gaps
in a transverse field:1 the hardening of the mode in the field
direction, while the second mode remains unchanged,

�a�H� = �ma
2 + �gs

a
BH�2, �c�H� = mc. �16�

Here we indicate with ma ,mc the gaps of the magnon modes
at zero field, �a�0�=ma and �c�0�=mc. Moreover, with re-
spect to the preceding paper,1 we restored the physical units
for the magnetic field, introducing the Bohr magneton 
B
=0.4668 cm−1 T−1 and the gyromagnetic ratio gs

a for the field
along a. We then obtain for the �a mode the relation

�a
2 = ma

2 + �aH2, �a = �gs
a
B�2. �17�

As one can see in Fig. 7, the data for �a�H �a� follow per-
fectly the previous equation, with a coefficient �a

F

FIG. 5. �Color online� One-magnon Raman response for
La2CuO4 at T=10 K in the �RR� circular polarization configuration
for a magnetic field applied along the orthorhombic b easy axis,
where the field-induced mode becomes Raman active �see discus-
sion in the text�. We observed a monotonic hardening of the field-
induced mode with increasing applied field.

FIG. 6. �Color online� One-magnon Raman response for
Sr2CuO2Cl2 at T=10 K in the �RL� polarization configuration,
where only the in-plane gap is Raman active. Main figure: harden-
ing of the in-plane gap with increasing in-plane magnetic field.
Insets: �top� zoomed image of the main plot, showing the much
weaker intensity of the two-magnon scattering, starting at approxi-
mately twice the magnon gap; �bottom� featureless response for
perpendicular magnetic field �the out-of-plane �XY� mode is not
Raman active in the backscattering geometry used here�.
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=0.93�cm T�−2 estimated by fitting the data with Eq. �17�.
This value allows us to estimate the gyromagnetic ratio as

gs
a = ��a

F/
B = 2.0, �18�

in good agreement with the estimate given usually in the
literature.

B. H parallel to c

When the field is applied along the c direction one ob-
serves a spin flop of the ferromagnetic spin components
along c, which are ordered antiferromagnetically in neigh-
boring planes at low field.1,10,11 This weak ferromagnetic
�WF� transition has been indeed measured in Ref. 25 for the
x=0.01 doped compound, occurring at a temperature-
dependent critical field of about 4 T at T=50 K. Since the
magnitude of the ferromagnetic spin components along c de-
creases with the temperature proportionally to the AF order
parameter �0, also the critical field Hc for the WF transition
decreases with temperature. By properly taking into account
the effect of quantum and thermal fluctuations on the order
parameter one can determine the Hc�T� curve reported in Fig.
81 where we also sketch the spin configuration above and
below the transition. However, as it has been discussed in
Ref. 1, a first estimate for the critical field at low temperature
and for the field dependence of the magnon gaps can be
obtained by neglecting the renormalization of �0. Using the
notation of Ref. 1, we will decompose the spin at site i in its
staggered n and uniform L component, so that Si /S
=eiQ·rini+aL. In the AF ordered state 	n
=�0, where in gen-
eral �0 is corrected both by quantum and thermal corrections.
At low temperatures, and neglecting quantum fluctuations
��0=1�, one obtains that the critical field is

Hc =
2�

gs
c
BD+

, �19�

where �=2JJ� is the energy scale associated to the inter-
layer coupling J�, and D+ is the modulus of the DM vector,

which controls also the H=0 value of the DM gap, D+
�ma.1 According to the analysis of Ref. 1, the magnon gaps
evolve, below Hc, as

�a
2 = ma

2 + 2� − �4�2 + �gs
c
BHD+�2,

�c
2 = mc

2 + �gs
c
BH�2 + 2� − �4�2 + �gs

c
BHD+�2, H � Hc,

�20�

while above the WF transition they are given by

�a
2 = ma

2 + �gs
c
BHD+� ,

�c
2 = mc

2 + �gs
c
BH�2 + �gs

c
BHD+�, H � Hc. �21�

Using this set of equations we recognize that the parameter �
can be determined from the jump of the gap at Hc, since

�a
2�Hc

−� = ma
2 − 2���2 − 1�, �a

2�Hc
+� = ma

2 + 2� .

We can then estimate

2� =
�a

2�Hc
+� − �a

2�Hc
−�

�2
= 143.25 cm−2, �22�

from which it follows also that

� = 2JJ� Þ J�/J � 3.2 � 10−5, �23�

where we used J=130 meV. We can then recognize that the
field evolution of the �a gap above and below the WF tran-
sition is controlled by a single parameter �c,

�a
2 = ma

2 + 2� − �4�2 + ��cH�2, H � Hc

FIG. 7. �Color online� Comparison between the experimental
data and theoretical predictions for the field dependence of the DM
gap for H �a. The closed circles are the experimental data. The line
is the best fit obtained using Eq. �17�, with �a

F=0.93 �cm T�−2.

FIG. 8. �Color online� Phase diagram of the weak-ferromagnetic
transition and spin configuration for H �c. The arrows with open tip
represent the spins in each layer, the small ones on the right of the
layers the uniform spin components. At low temperature and zero or
low field the uniform components of the spins in each layers are
ordered antiferromagnetically in the c direction. Above the critical
field �19� the uniform components order ferromagnetically in the c
direction. As the temperature increases the uniform components de-
crease following the decrease of the AF spin component along b,
and as a consequence also the critical field for the WF transition
decreases. The phase diagram has been calculated in Ref. 1 �see
Fig. 10� by using parameter values appropriate for La2CuO4.
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�a
2 = ma

2 + �cH, H � Hc, �24�

where �c is uniquely determined by 2�, Hc, and the gyro-
magnetic ratio of the c direction gs

c,

�c = gs
c
BD+ =

2�

Hc
. �25�

As a consequence, we can extract gs
c both by fitting the ex-

perimental data with Eqs. �24� and obtaining a value �c
F, and

by using directly the last two equalities of Eq. �25�. In the
former case we obtain �c

F= 21.83 cm−2 T−1, which corre-
sponds to gs

c=2.7 �see Fig. 9�. In the latter case instead we
can use the value of 2� obtained from the jump of the gap at
Hc, the value D+=ma=17.48 cm−1, and the measured value
Hc�6.6 T, finding

gs
c =

2�


BHcD+
= 2.65. �26�

Thus both estimates give a value which is quite close to the
one commonly quoted in the literature, gs

c=2.45.
Observe that this value of gs

c is only an upper bound be-
cause we did not include in the set of Eqs. �24� and in the
definition of the critical field �19� the quantum and thermal
correction of the order parameter �0, which reduce its value
with respect to �0=1 used so far. As it has been explained in
Ref. 1, when this effect is taken into account one must re-
place D+ by D+ /�0 in Eqs. �20� and �21�

�a
2 = ma

2 + 2� −�4�2 + �gs
c
BHD+

�0
�2

,

�c
2 = mc

2 + �gs
c
BH�2

+ 2� −�4�2 + �gs
c
BHD+

�0
�2

, H � Hc, �27�

and

�a
2 = ma

2 + �gs
c
BHD+

��0�
� ,

�c
2 = mc

2 + �gs
c
BH�2 + �gs

c
BHD+

��0�
�, H � Hc. �28�

At the same time the critical field is a function of �0 accord-
ing to

Hc =
4�

gs
c
BD+

�0

1 + �0
2 . �29�

The order parameter �0 is determined at each temperature by
computing the effect of transverse spin-wave fluctuations,
which depends on the magnon gap according to a general
equation like

�0
2�H,T� = 1 − I�„�a�H�,�c�H�,T… , �30�

where the precise expression for I� is given in Ref. 1. Note
that since the DM interaction introduces an explicit depen-
dence of the magnon gaps on the order parameter, see Eqs.
�27� and �28�, Eq. �30� is a self-consistency equation for �0.
As far as the previous estimates of � and gs

c are concerned,
one can see that the solution of the full set of Eqs. �27�–�30�
can slightly modify the values previously obtained in two
respects. First, the jump of the gap at the critical field will
depend not only on � but also on �0. Second, the analogous
of Eq. �26� will be

gs
c =

4�


BHcD+

�0

1 + �0
2 . �31�

Observe that both these corrections will contribute to a re-
duction of gs

c with respect to the previous estimate. However,
since the experimental determination of �0 in this sample is
not available and the theoretical value depends on the ap-
proximations used to derive Eq. �30�, we retain here the es-
timates given above using �0=1 and we refer the reader to
Ref. 1 for a more detailed discussion of this issue.

We should point out that a somewhat larger estimate for
the critical field Hc has been extracted recently from the
neutron-scattering measurements of Ref. 17, in a La2CuO4
sample with almost the same Néel temperature as the one
considered here. According to the previous Eq. �29�, several
factors can affect the critical field. Thus the larger critical
field measured in the sample of Ref. 17 can be explained
with a larger value of the staggered order parameter and of
the interlayer coupling �, or also with a smaller value of the
DM vector D+. However, one should remember that the
weak-ferromagnetic transition for H �c is a first-order transi-
tion accompanied by a hysteresis that can be large at low
temperature �see, for example, Ref. 25�, and hence the ex-
perimentally determined critical field could be affected by
the hysteresis. As a consequence, further investigation of the

FIG. 9. �Color online� Comparison between the experimental
data and the theoretical predictions for the field dependence of the
DM gap for H �c. The closed circles are the experimental data.
Observe that near the WF transition two values of the gap have
been measured �see also panel �c� of Fig. 4�. Indeed, since the
transition is first order in a finite sample the transition is observed as
a coexistence of the two phases �above and below the transition� for
a range of field values around the thermodynamic critical field. The
lines are the fit using Eqs. �24�, with �c

F=21.83 cm−2 T−1.
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parameter values for this sample can shed more light on this
apparent discrepancy between the Raman and the neutron-
scattering measurements.

C. H parallel to b

Finally, let us discuss the case of H �b, where also the data
for the field-induced mode �c are available for H�4 T. Here
again the field dependence of the magnon gaps follows a
different behavior for small and large field. As it has been
explained in Ref. 1, due to the DM interaction a field along b
generates an effective staggered field in the c direction, giv-
ing rise to a rotation of the staggered order parameter in the
bc plane.17 As a consequence, at low field the classical con-
figuration of the staggered AF order parameter nm in the mth
plane is given by

nm = „0,�b,�− 1�m�c… , �32�

where �b and �c indicate, respectively, the components of
the order parameter along the b and c directions. Observe
that an oscillating staggered �c component implies that in the
spin decomposition Si

m /S= �−1�meiQ·rini
m+Li

m given above
actually the Sc components coming from nc are ordered fer-
romagnetically in neighboring planes, to allow for the �aver-
age� uniform spin components L induced by the DM vector
to align along the applied field.1

As the field strength increases, the spins perform a two-
step spin-flop transition:1,10,11 at H=Hc

�1� the in-plane AF
components align along the a direction, while at H=Hc

�2�

�Hc
�1� the a component vanishes and only the staggered spin

components in the c direction are left. In Fig. 10 we shown
the �H-T� phase diagram which has been evaluated in Ref. 1
by means of a saddle-point approximation for the transverse
spin fluctuations. The temperature TN is the one where the
in-plane spin component �along b or a� vanishes, leaving a
nonzero �c component. Observe that the jump of TN�H� at
Hc

�1� is an artifact of the approximation: indeed, the critical
field for this transition is controlled by the energy scale
where the �a gap vanishes �see Eq. �34� below�, i.e.,

gs
b
BHc

�1� = ma = D+, �33�

which corresponds, in our case, to Hc
�1�=18 T. Since within

the saddle-point approximation ma is temperature indepen-
dent, at this level one cannot recover the temperature varia-
tion of Hc

�1� which would eliminate the anomalous jump of
TN�H� reported in Fig. 10. Since the maximum field used in
the present experiments is H=11 T, this spin-flop transition
is out of the range accessible in our measurements. It is
perhaps worth pointing out that in a recent work the evolu-
tion of the magnetic signal for H �b has been measured by
means of neutron scattering up to fields of 14 T.17 By assum-
ing a power-law decay of the intensity of the �100� neutron
peak—corresponding to magnetic order along the b
direction—the authors could estimate for the above critical
field a slightly higher value of 22 T. Considering that a the-
oretical prediction of the neutron-peak intensity as a function
of magnetic field is still lacking, this estimate seems in good
agreement with the value �33� given above.

As far as the magnon-gap evolution with magnetic field is
concerned, at fields below Hc

�1� it is the usual one for longi-
tudinal fields,1

�a
2 =

ma
2 + mc

2

2
+ �gs

b
BH�2

−��ma
2 − mc

2

2
�2

+ 4�gs
b
BH�2�mc

2 + ma
2

2
� ,

�c
2 =

ma
2 + mc

2

2
+ �gs

b
BH�2

+��ma
2 − mc

2

2
�2

+ 4�gs
b
BH�2�mc

2 + ma
2

2
� . �34�

At small field these expressions can be approximated as

�a
2 = ma

2 − �aH2, �a = �gs
b
B�2�ma,

�ma = �2
mc

2 + ma
2

mc
2 − ma

2 − 1� ,

�c
2 = mc

2 + �cH
2, �c = �gs

b
B�2�mc, �35�

�mc = �2
mc

2 + ma
2

mc
2 − ma

2 + 1� .

Using Eq. �34� and the zero-field value of the a mode we
obtain again an excellent agreement with the experimental

FIG. 10. �Color online� Phase diagram and evolution of the spin
configuration for H �b. For the spin components we use the same
notation as in Fig. 8 above. At H�Hc

�1� both the spins and the
uniform components rotate in the bc plane, so that the net uniform
magnetization is along the b axis. In this region TN�H� is the tem-
perature at which the in-plane AF component along b vanishes. At
Hc

�1�
�H�Hc

�2� the AF spin components align along a which is
perpendicular to the plane of the figure, so that these spin compo-
nents, which vanish at the temperature TN�H�, are represented by
the small crosses. At the same time, the uniform components align
ferromagnetically in neighboring planes. At H�Hc

�2� only the c
components survive.
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points, as one can see in Fig. 11. For the sake of complete-
ness we also report in Fig. 11 the approximate expression
�35�, which is indeed valid until the field Hl�4 T. From the
fit of the �a data using Eqs. �34� we obtain both mc=�c�H
=0� and the gyromagnetic ratio. The results are

mc = 36 cm−1, gs
b = 2.08, �36�

which are again in excellent agreement with the values re-
ported in the literature.

In the inset of Fig. 11 we show also the field dependence
of the field-induced �c �XY� mode according to Eq. �34�,
using the values �36� extracted from the fitting of the �a
mode. As one can see, only the data point at 9 T is out of the
range of the theoretical curve. The appearance of the field-
induced �c mode for the in-plane Raman scattering in the
�RR� polarization configuration is now well understood as
being a consequence of a continuous rotation of the magne-
tization axis when H �b.16

D. Peak intensity as a function of magnetic field

A complete microscopic theory of the Raman scattering
which allows one to compute the exact shape and the abso-
lute intensity of the Raman peaks is out of the scope of the
present paper. Nonetheless, when data taken at different
magnetic fields are compared, one could expect that the main
dependence of the relative peak intensity measured by Ra-
man can be at least qualitatively described by the theory
developed in Ref. 1. Indeed, the spectral function Aa,c con-
tains itself an intrinsic dependence of the peak intensity on
the magnetic field, which enters in the Raman response
through the relation �13�. Thus we can evaluate Eq. �13�
using the theoretical prediction for Aa,c and compare it with

the experimental data. As we shall see, even though our
analysis does not include the spin damping processes, the
overall agreement between the theoretical predictions and the
experimental data is fairly good.

As it has been discussed in Ref. 1, the spectral function of
each mode is defined from the Green’s function for the cor-
responding fluctuations. In the absence of magnetic field the
Green’s function for the transverse mode is a diagonal ma-
trix,

Ĝ−1 =
1

gc
��n

2 + �a
2�k� 0

0 �n
2 + �c

2�k�
� , �37�

where the magnon gap is by definition �a,c=�a,c�k=0�. In
this case the Green’s function matrix is also diagonal and we
simply obtain

Aa�� � 0� = −
1

�
Im Ga�i�n → � + i0+� =

1

2�a
��� − �a� ,

�38�

and analogously for Ac. Thus from Eq. �38� we can deduce
that the peak intensity Ia evolves as 1/�a, i.e., it is larger for
smaller gap values.

When a magnetic field is applied, two different cases must

be considered: �i� if the matrix Ĝ is still diagonal the struc-
ture �38� of the spectral function is preserved, and both the
peak position and its intensity evolve as �a,c�H�, and Ia

=1/�a,c�H�, respectively; �ii� if off-diagonal terms propor-
tional to the magnetic field appear in Eq. �37� the Green’s
function of the transverse fluctuations has a nondiagonal
structure which leads to the appearance of several magnon
gaps in the response of each single mode. For example, in
the case of longitudinal field one has for the spectral function
of the a mode a structure like1

Aa�� � 0� = � Za

2�a
��� − �a� +

Zc

2�c
��� − �c�� . �39�

However, one finds in general that Za /�a�Zc /�c, so that
essentially a single peak at the �a energy is observed in the
measurements, but the spectral weight of this peak is Ia
=Za /�a and not just 1 /�a as in Eq. �38�. Indeed, the factor
Za in Eq. �39� leads in general to an additional field depen-
dence of the intensity on the magnetic field.

For an ordinary easy-axis AF Eq. �38� is valid when a
transverse field is applied, so that an hardening of the gap in
the field direction should be also accompanied by a softening
of the peak intensity. For a longitudinal field one finds in-
stead the spectral function �39� given above. According to
the calculations of Ref. 1, Za is given by

Za =
− �a

2 + mc
2 − H2

�c
2 − �a

2 , �40�

and it is a decreasing function of the magnetic field. As a
consequence, the overall factor Za /�a in Eq. �39� is increas-
ing much more slowly than the �1/�a behavior that one
could expect for a transverse gap, as it is shown in Fig. 12.
Here, according to Eq. �13�, we included also the Bose factor

FIG. 11. �Color online� Comparison between the experimental
data and the theoretical predictions for the field dependence of the a
mode for H �b. The solid line is the fit done using the first of Eqs.
�34� with gs and mc as fitting parameters, giving gs

b=2.08 and mc

=36 cm−1. The dashed line is the approximated expression �35�
evaluated with the same parameters values, and it is only valid at
low field. Inset: field dependence of the c mode observed at fields
larger than 4 T. The solid line is the curve corresponding to the
second of Eqs. �34�.
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�nB���+1�, whose contribution to the overall dependence of
the peak intensity is, however, very small.

In the case of H �c in an ordinary easy-axis AF one would
expect the peak for the a to be unchanged, as indeed ob-
served in Sr2CuO2Cl2. However, for La2CuO4 the presence
of the DM interaction does modify both the peak position
and its intensity as a function of magnetic field. Below the
critical field for the spin-flop transition the spectral function
of the a mode is1

Aa�� � 0� �
Za

�a
��� − �a� , �41�

where

Za =
2� + �4�2 + �HD+/�0�2

2�4�2 + �HD+/�0�2
. �42�

Once again, while the 1/�a�H� increases with magnetic field
the Za factor decreases, giving rise to an almost constant
spectral weight below the spin-flop transition, see Fig. 13.
Here we used the � value extracted from the fit with �0=1.
Above the spin-flop transition the matrix of the transverse
fluctuations is again diagonal and the standard Ia=1/�a
spectral weight is expected, with the �a�H� dependence
given by Eq. �28�.

VI. MAGNETIC SPECTRUM IN Sr2CuO2Cl2

The case of Sr2CuO2Cl2 is rather simple. This system is
very well described by the Hamiltonian �1� with a large XY
anisotropy �c�10−4J. Since the system is tetragonal, one
does not have in principle any intrinsic in-plane anisotropy,
i.e., one would expect �a=0 in this case. Nonetheless, it has
been suggested in Ref. 5 that a very small in-plane gap can

still exist due to purely quantum effects. Recent ESR mea-
surements seem to confirm this prediction and give an esti-
mate of the in-plane gap as ma=0.048�0.05 meV.6 As we
can see from Fig. 6 there might be a peak at low energies
�below 2 cm−1 for H=0 T�, which can well correspond to the
same in-plane gap as observed by ESR. As far as the field
dependence of the gaps is concerned, the results obtained in
Secs. III and IV of the preceding paper for a conventional
easy-axis AF still apply.1 Moreover, since no orthorhombic
distortion exists in Sr2CuO2Cl2, no DM interaction is
present, and no effects due to staggered fields will show up
in the field dependence of the magnon gaps.

In Fig. 14 we compare the extracted dispersion of the
in-plane gap in Sr2CuO2Cl2 for an applied magnetic field
parallel to the CuO2 layers, with the predictions for a trans-
verse magnetic field from the theory presented in the preced-
ing paper1

�a�H� = �ma
2 + �gs
BH�2. �43�

As we can see, by using the value of the gap given by the
ESR measurements, ma=0.048–0.05 meV,6 and gs=2.05 the
agreement is already quite good. On the other hand, we can
use the Raman data alone to give an independent estimate of
both ma and gs, in the same spirit of the previous sections.
This is shown in Fig. 14, and the best fit is for gs=1.98 and
ma=1.96 cm−1 �ma=0.24 meV�. Observe that this estimate
of ma is larger than the one measured by ESR, but it is still
consistent with the fact that at H=0 no gap was observed in
the Raman spectra at frequency larger than 2 cm−1, which is
the lower bound of the accessible frequency range as shown
in Fig. 6.

Finally, we should emphasize that no field-induced modes
were observed in Sr2CuO2Cl2 either for perpendicular or in-

FIG. 12. �Color online� Field dependence of the normalized in-
tensity Ia�H� / Ia of the a peak for a longitudinal field. We estimated
the relative error on the measured peak intensity around 20%. Solid
line: field dependence of the peak intensity according to Eqs. �39�
and �40�. Observe that by neglecting the contribution of the Za

factor from Eq. �40� one would obtain Ia=1/�a, corresponding to
the dashed line, which shows an increasing of the relative intensity
not observed in the experiments.

FIG. 13. �Color online� Field dependence of the intensity of the
a peak for a transverse field in the c direction. Observe that the
spin-flop WF transition is first order, so that by increasing the mag-
netic field one first accesses a crossover regime where the Raman
intensity is split between the two peaks corresponding to the equi-
librium gap values at H�Hc and H�Hc. Thus only the data at H
�7 T should be compared with the dashed curve, corresponding to
the state above the spin flop.
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plane magnetic fields. This results from the absence of the
Dzyaloshinskii-Moriya interaction in Sr2CuO2Cl2. In fact, it
is exactly the DM interaction in La2CuO4 that causes the
rotation of the spin-quantization basis and modifies the Ra-
man selection rules allowing for the appearance of a field-
induced mode when the field is along the easy axis.16 More-
over, the DM interaction is responsible for the in-plane gap
evolution for a field along c, which is instead unexpected in
a conventional easy-axis antiferromagnet.

VII. CONCLUSIONS

We have measured, discussed, and compared the one-
magnon Raman spectrum of Sr2CuO2Cl2 and La2CuO4. We

have seen that, for the case of Sr2CuO2Cl2, which is a con-
ventional easy-axis antiferromagnet, there is an in-plane
magnon mode at very low energies in the DAg channel that is
accessible in the �RL� polarization configuration. No out-of-
plane or field-induced modes were observed in the geom-
etries used, in agreement with the general expectation for a
conventional easy-axis antiferromagnet. For the case of
La2CuO4, the magnetic-field evolution of the in-plane gap
measured in the �RL� polarization configuration is made
rather nontrivial due to the presence of the DM interaction.
When the field is along c the DM gap first softens, jumps
discontinuously at the critical field for the WF transition, and
then hardens. At the same time, when a longitudinal field is
applied the a mode softens and the �field-induced� c mode
appears in the �RR� polarization, as a consequence of a rota-
tion of the spin quantization basis.16 The magnetic-field de-
pendence of the one-magnon Raman energies were found to
agree remarkably well with the theoretical predictions of pa-
per I of this work,1 allowing us to extract from the Raman
spectra the values of the various components of the gyro-
magnetic tensor and of the interlayer coupling. Moreover, the
analysis of the field evolution of the Raman-peak intensity,
which also shows a general good agreement with the experi-
ments, demonstrated that the long-wavelength analysis of
Ref. 1 contains additional useful information with respect to
the standard spin-wave calculations of the magnon gaps ex-
isting in the literature.
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