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1 (Sr,La)14−xCaxCu24O41 : the Structure and General Properties

In 1988, material research focussed around the study of high temperature superconducting copper-oxides
brought about new phases of Cu-O based systems, the two-leg spin-ladders (2LL’s), that have the general
formula (A1−xA’x)14Cu24O41, with A an alkaline earth metal and A’ a trivalent (transition or lanthanoid)
metal [1, 2]. There were well-founded hopes that these materials could provide useful insight for the
unresolved problems posed by the 2D cuprates [3, 4] and from this perspective two main reasons triggered
the interest of the scientific community. One of them was based on a number of physical properties that are
common for both ladders and high Tc’s. These include the presence of similar Cu-O-Cu antiferromagnetic
(AF) correlations which give rise to a finite spin gap and were predicted to generate d-wave like pairing
of doped carriers [5], the evidence for ’pseudogap’ phenomena in optical absorption spectra [6] and,
most importantly, the discovery of superconductivity under pressure evolving with hole doping in the
AF environment [7, 8]. The second reason resides in the crystal similarities and more precisely the fact
that one can imagine building the 2D square Cu-O lattice by gradually increasing the coupling between
individual 2LL’s [9], the simplicity of the latter making them more tractable for theoretical analysis.

The unit cell of Sr14Cu24O41 contains four formula units, 316 atoms in all, this large number of atoms
being due to the presence of two nearly commensurate substructures: the CuO2 chains and the Cu2O3

2LL’s. A better understanding of the two interacting blocks can be achieved by decomposing the chemical
formula into (Sr2Cu2O3)7(CuO2)10: planes of CuO2 chains are stacked alternately with planes of Cu2O3

ladders and these are separated by Sr buffer layers, see Fig. 1. The lattice constants of the individual sub-
systems satisfy the approximate relation 7 cladder ≈ 10 cchain. The b-axis is perpendicular to the Cu-O
layers which define the (ac) plane, the c-axis being along the ladder/chain direction. A valence counting
shows that Sr2+14 Cu24O

2−
41 is intrinsically doped, the average valence per Cu atoms being +2.25. Optical

conductivity [10], X-ray absorption [11], dc resistivity and magnetic susceptibility [12] measurements, as
well as evaluations of the Madelung potential [13] and valence-bond-sums [12] support the idea that in
this compound the holes reside mainly in the chain structures and the isovalent Ca substitution for Sr in
Sr14−xCaxCu24O41 induces a transfer of holes into the more conductive ladders. A relatively large ladder
carrier density change from 0.07 hole per Cu for x = 0 to about 0.2 for x = 11 due to Sr substitution
was inferred from low energy optical spectral weight transfer[10], but X-ray absorption [11], while still
supporting the hole migration scenario, is in favor of a less pronounced hole transfer. On the other hand,
La3+ and Y3+ substitutions for Sr decrease the total hole concentration, the La6Ca8Cu24O41 compound
containing no holes per formula unit. As a result, the ladder systems provide the opportunity to study not
only magnetism in low dimensional quantum systems like undoped ladders but also competing ground
states and carrier dynamics in an antiferromagnetic environment. Data interpretation, encumbered by
the presence of two interacting subsystems in (Sr,La)14−xCaxCu24O41 crystals, is being helped by exper-
imental realizations of other related compounds like SrCu2O3, which contains only 2LL planes (Fig. 1c),
or Sr2CuO3 and SrCuO2, which incorporates only quasi-1D Cu-O chain units with a similar coordination
as in Fig. 1b. Unfortunately, doping in these latter systems has not been achieved so far.
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Fig. 1. (a) The 3D structure of Sr14Cu24O41 viewed in the (ab) plane; (b) the CuO2 chains. (c) the Cu2O3 two-leg
ladders. In (b) and (c) the black dots are Cu atoms and the empty circles represent O atoms.

Ca substitution in Sr14−xCaxCu24O41 has an important impact on the transport properties because
of the chain-ladder hole transfer. Indeed, while Sr14Cu24O41 is an insulator showing an activation gap
∆ ≈ 2100 K (180 meV), a crossover from insulating to metallic conduction at high temperatures takes
place around x = 11 and for x = 12 the c-axis dc resistivity has a minimum around 70 K separating
quasi-linear metallic (above T = 70 K) and highly insulating behavior at low temperatures [6]. At higher
Ca concentrations superconductivity under pressure has been observed, for example, a Tc of 12 K under
a pressure P = 3 GPa was found in x = 13.6 Sr14−xCaxCu24O41 [7].

These properties, many of them common also to the 2D superconducting cuprates, underscore the
potential value of the ladder systems for the understanding of superconductivity and also for the problem
of identifying possibly competing order parameters in doped Mott-Hubbard systems. The plan for this
chapter is to present the magnetic properties of S = 1/2 2LL’s along with our Raman scattering data
on the two-magnon (2M) excitation in Sr14Cu24O41, showing its polarization, resonance and relaxation
properties. This is followed by the the analysis of Ca substitution effects on the low and high energy
charge/spin degrees of freedom, our data supporting a scenario involving density-wave fluctuations as
one of the competing orders for superconductivity.

2 Magnetic Properties of Sr14Cu24O41

2.1 Energy Scales

Responsible for the magnetic properties are the Cu atoms which carry a spin S = 1/2 due to a missing
electron on their 3d shells. The AF super-exchange between them is mediated by the O ligand 2p orbitals.
The optical absorption due to transitions across the charge-transfer gap (determined by the energy
difference between the Cu3d and O2p orbitals) is seen to occur at around 2 eV [10]. The sign of the super-
exchange as a function of the Cu-O-Cu bond angle can be qualitatively estimated semi-empirically as the
balance of two terms: the first term is a relatively small, weakly bond angle dependent, ferromagnetic
interaction while the second is antiferromagnetic, large for a 180◦ Cu-O-Cu bond but strongly varying
with the bond angle, tending to zero around 90◦ [14].

Cu-O chains – As a result of nuclear magnetic/quadrupole resonance (NMR/NQR) [15], X-ray [16]
and inelastic neutron scattering (INS) [17, 18] measurements, the following picture provide clarification
over some controversial aspects regarding charge/spin ordering in these structures. NMR/NQR data
identified two Cuchain sites, one carrying spin 1/2 and one non-magnetic because of Zhang-Rice (ZR)
singlet formation, that is a spin S = 0 state made out of a O2p hole and a Cu3d hole due to orbital
hybridization. The data suggested the existence of a superstructure from the multipeak structure of
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Fig. 2. (a) X-ray intensity of the super structure peak seen at (0,0,2.2) in a θ − 2θ scan for several temperatures
indicating a 5-fold charge modulation, from Ref. [16]. Q is the momentum transfer measured in chain reciprocal
units. (b) Charge pattern in the chains and the associated AF interactions as determined from Ref. [18]. The
squares denote Zhang-Rice singlets.

the NMR spectra below about 150 K [15]. X-ray studies [16] established a five-fold charge modulation
in the chains’ ground state along the c direction which exists at all temperatures below 300 K and a
correlation length longer than 200 Å, confirming an ordered pattern involving AF spin dimers separated
by two ZR singlets, see Fig. 2. Neutron scattering further supports such a superstructure by analyzing
magnetic excitations out of the chain structures and evaluates the dominant intra-dimer exchange to be
J1 ≈ 10 meV [17, 18] which is also sets the value of spin gap in the dimerized chain. Surprisingly, the
inter-dimer and inter-chain exchanges were found to be of the same order of magnitude but of different
signs: J2 ≈ -1.1 meV and Ja ≈ = 1.7 meV [18] and, consistent with NMR/NQR data [15], 2D spin
correlations due to Ja were shown to develop below a characteristic temperature of about 150 K. Notable
is the fact that if the ZR complexes are effectively made of truly Cu3+ ions, the modulation shown in
Fig. 1.2 would correspond to a Cuchain valence of 2.6+ meaning that all the holes are located in the
chains. Residual carriers are however present in the ladders and microwave [19] and NMR/NQR [15] data
suggested the possibility of charge ordering in these systems too.

Cu-O ladders – At low temperatures Sr14Cu24O41 can be regarded as an example of a 2LL structure
close to half-filling (undoped with carriers). Moreover, an individual 2LL, shown in Fig. 3 is expected
to incorporate the essence of the spin dynamics in this subsystem. This is because the Cu-O-Cu bonds
which are close to 180◦ generate a strong super-exchange J‖ and J⊥ (see Fig. 3) of the order of 130 meV
(≈ 1000cm−1). This value is about two orders of magnitude stronger than the (frustrated) ferromagnetic
inter-ladder interaction, see Fig. 1. From the 2D cuprates experience, an expected Raman signature
at energies of several J’s is a two magnon (2M) like excitation consisting of a pair of spin-flips. Low
temperature behavior seen in magnetic susceptibility and NMR data show that, unlike in the cuprates,
the low frequency spin behavior is not determined by gapless spin-wave modes, expected when one ignores
small anisotropies which can create long wavelength gaps. Here there is a substantial spin-gap from the
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Fig. 3. (a) Schematic of a two-leg ladder. J‖ and J⊥ represent the nearest neighbor AF exchanges along the
ladder legs and rungs respectively. The circle is an example of a higher order spin interaction, in this case the ring
exchange Jring , which is thought to play an important role in the magnetic dynamics of the ladders, see text. (b)
The ground state of the two-leg ladder in (a) in the limit y = J‖/J⊥ → 0. The ovals represent spin singlet states:
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singlet ground state to the lowest triplet (S = 1) excitation. The gap value for Sr14Cu24O41 extracted
from the temperature dependent Knight shift in Cu-NMR data was ∆S ≈ 32 meV (260 cm−1) [15, 20], in
good agreement with the gap extracted from neutron scattering data [17] in the same material as well as
with the quasi-activated magnetization data [χ(T ) ∝ (1/

√
T )e−∆/kBT see Ref. [3]] in the 2LL SrCu2O3

[21]. Spin-gap determination from magnetization measurements in Sr14Cu24O41 is more ambiguous due
to the prominent contribution from the chains. The magnetic properties of the Sr14Cu24O41 ladders, is
the concern of the following sections.

2.2 Undoped Two-Leg Ladders: Theoretical Aspects

The starting point for the determination of the ladder excitation spectrum has been the AF nearest-
neighbor isotropic Heisenberg Hamiltonian, allowing for the leg and rung couplings J‖ and J⊥, see Fig. 3a.
This Hamiltonian reads:

H = H‖ + H⊥ = J‖
∑

i,α=1,2

Si,α · Si+1,α + J⊥
∑

i

Si,1 · Si,2 (1)

From the crystal structure one can anticipate that the relevant parameter range for the leg to rung super-
exchange ratio is y = J‖/J⊥ ≈ 1. The excitation spectrum could be easily understood starting from the
strong coupling limit, J‖/J⊥ → 0: the ground state is a simple product of singlets sitting on each rung,
see Fig 3b. Excited N-particle states (where N is the number of triplets) are highly degenerate and are
obtained by exciting elementary triplets on N different rungs [3, 4, 5, 22]. The nature of the ground and
first excited states evolves smoothly when a small J‖ is present. This allows the rung triplets to propagate
along the ladder giving rise to dispersion in the reciprocal space. The bandwidth is proportional to J‖
and the band minimum of the one-triplet branch is at the Brillouin zone boundary, k = π [22]. In the
limit of uncoupled AF S = 1/2 chains, J‖/J⊥ → ∞, the result is also known and the ground state is
characterized by an algebraic decay of magnetic correlations, the excitation spectrum is gapless with
soliton-like S = 1/2 excitations (spinons) [23].

The picture described above is supported by theoretical calculations, and it turns out that in the
general case the ’physics’ of undoped 2LL’s is dominated by the strong coupling limit.

(a) (b) (c)

Fig. 4. (a) Results of series expansions calculations (Ref. [25]) around the Ising limit for a two-leg ladder Hamil-
tonian, Eq.(1.1). From top to bottom the elementary one-magnon excitation was computed for a decreasing
ratio J⊥/J‖ from 2 to 0. The limit J⊥/J‖ → 0 corresponds to spinons, the limit J⊥/J‖ → ∞ corresponds to
uncoupled dimers on the ladder rungs. (b) Neutron scattering results for the elementary triplet dispersion in
La6Ca8Cu24O41 (from Ref. [26]) (c) Dispersion inferred from neutron scattering data (Ref. [27]) along the chain
direction in the Haldane system CsNiCl3. The similarity with Fig. 4a becomes obvious in the strong coupling
limit, J⊥ > J‖.
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Fig. 5. (a) Excitation spectrum in the one and two-particle channels at isotropic coupling J‖/J⊥ = 1 from
Ref. [28]. The elementary triplet, the two-particle continuum as well as the two-magnon singlet and triplet bound
states are indicated in the figure. (b) The k-resolved spectral density I(k,ω) of the Si,1 · Si+1,1 + Si,2 · Si+1,2

operator. This is proportional to the magnetic Raman response in parallel polarization with the electric field along
the leg direction. The divergences observed around k ≈ 0.6 are due to the hump-dip structure of the S = 0 bound
state in (a). Data from Ref. [28].

• The ground state is disordered and has exponential falloff of the spin-spin correlations. A good de-
scription of the magnetic correlations is achieved within the resonance valence bond (RVB) model
[24]. For a pictorial representation see Fig. 6b. Although a high J‖/J⊥ increases singlet correlations
beyond nearest-neighbors, a ground state built up as a superposition of short-ranged resonating va-
lence bonds remains a good approximation. For odd-leg ladders long-ranged singlets must be included
in the ground state description [24].

• The one particle excitations of the ladder have a gap ∆S because any finite J⊥ confines the S = 1/2
spinons binding them to an integer S = 1 ’magnon’. Results of series expansions around the Ising
limit for 2LL’s at various couplings y = J‖/J⊥ from Ref. [25] are shown in Fig. 1.4a. These results
are further confirmed by exact diagonalizations [5], numerical [22] and perturbative [28] analysis. It
has been also found that the spin gap remains finite for even leg ladders (although the gap decreases
with increasing the number of legs) while odd-legged ladders are gapless and have a power law fall-off
of spin-spin correlations [24]. This resembles the gapless and gapped alternance of the spectrum for
isotropic AF half-integer and integer spin chains [29]. The similarity is not accidental since a spin
S chain can be described as 2S coupled spin S = 1/2 chains with appropriately chosen interchain
coupling. This analogy is beautifully confirmed by the dispersion found above the Néel temperature in
an experimental realization of a Haldane system, CsNiCl3, a quasi-1D nearly isotropic S = 1 AF chain
[27]. In Fig. 4 we show for comparison the experimental elementary magnon dispersion in CsNiCl3
along with experimental data and theoretical predictions for 2LL.

• The two-particle states : The elementary magnon branch will generate a two-magnon continuum start-
ing from 2∆S at k = 0. In addition, this spectrum contains additional magnetic bound/antibound
states. These are states with discrete energies which are found below/above the two particle contin-
uum [30]. Bound states have been found in the singlet (S = 0), triplet (S = 1) and quintuplet (S = 2)
sectors. A typical excitation spectrum calculated perturbatively for isotropic coupling, J‖/J⊥ = 1,
and containing several types of two-particle excitations discussed above is shown in Fig. 5. A partic-
ularity of 2LL’s is the fact that the bound states ’peel off’ the continuum at finite values of k. The
importance of higher order spin terms will be stressed in the following sections in connection with
data analysis. This analysis will show that one has to go beyond the nearest neighbor Heisenberg
Hamiltonian of Eq. (1) in order to explain the experimental data. Regarding the question whether
the best description at all energies is in terms of fractional or integer spin excitations, it is worth
noticing that, at least in the limit J‖/J⊥ ≤ 1, there is no necessity to resort to fractional spin states.
A description in terms of truly bosonic excitations works well in the sense that spectral densities of
spin-ladders can be described well by using integer spin excitations [28].
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Fig. 6. (a) Low temperature Raman spectra in several polarizations. The sharp, asymmetric peak at 3000 cm−1

is the two-magnon feature. The strong features below about 1200 cm−1 as well as the bump around 2350 cm−1

(which has about four times the energy of the 580 cm−1 Oxygen mode) in (cc) polarization represent single and
multi phonon excitations. (b) Cartoon showing the two-magnon excitation. Left: assuming a local AF Néel order
the spin exchange can take place along the rungs/legs of the ladder. Broken bonds and exchanged spins are shown
in red. Right: a snapshot of the short-range RVB ground state which is a superposition of states like the top
figure. The bottom picture represents a locally excited singlet state of two triplets.

2.3 Low Temperature Two-Magnon Light Scattering in Sr14Cu24O41

In this section we will discuss symmetry, spectral and resonance properties of the 2M excitation in
Sr14Cu24O41 at T = 10 K. Figure 6 shows Raman spectra in (cc), (aa) and (ac) polarization taken with
an excitation energy ωin = 1.84 eV. The spectra consist of a lower energy part where phonons are observed
(see caption of Fig. 6) and a sharp asymmetric peak at 3000 cm−1 present in parallel polarizations. In both
(aa) and (cc) polarizations the 3000 cm−1 peak is situated at exactly the same energy. In (ac) polarization
this feature is not present. The energy of the 3000 cm−1 mode, much larger than the relevant magnetic
interactions in the chain structures, allows an unambiguous assignment of this excitation to the ladder
systems. A comparison with the 2D tetragonal cuprates [31, 32] in terms of energy scales argues for the
interpretation of the 3000 cm−1 peak in terms of ladder 2M excitations. Moreover, in 2D cuprates the 2M
feature has B1g symmetry, this representation becoming the identical representation in the orthorhombic
group to which the ladder structure belongs. Indeed, as can be seen from Fig. 6, in Sr14Cu24O41 this
excitation is fully symmetric.

Although for the 2D cuprates a semi-classical counting of broken magnetic bonds within a local Néel
environment (see Fig. 6b) gives a good estimate (3J) for the 2M energy (which is found by more elaborate
calculations to be situated around 2.7 J), in 2LL’s this approach is not suitable. On one hand any small
anisotropy in the exchange parameters J‖ and J⊥ should lead to different peak energies in (aa) and (cc)
polarizations, see Fig. 6b, which is not observed, and on the other hand, even in the improbable case of
less than 0.03% anisotropy given by our energy resolution, this ’Ising counting’ estimates J ≈ 200 meV
which is almost 50% higher than the super-exchange in related 2D cuprates. The failure of this approach
may be related to the fact that the ground state of the 2LL’s cannot be described classically. A RVB
description of the ladder ground state has been proposed [24]. This can be understood as a coherent
superposition of ’valence bonds’, which are spin singlets, shown in Fig. 6c. For even leg ladders the RVB
states are short ranged (the singlets extend only over nearest neighbor Cu spins) and in this context,
starting from an ’instantaneous configuration’ of the ground state, the 2M excitation can be visualized
as a state in which two neighboring singlets get excited into a higher energy singlet state made out of
two triplet excitations.

Symmetry – The polarization selection rules for the 2M scattering can be explained using the
effective spin Hamiltonian corresponding to the photon induced spin exchange process [33, 34] which
reads
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HFL ∝
∑

<i,j>

(ein · rij)(eout · rij)Si · Sj (2)

where Si, Sj are Cu spins on the lattice sites i and j, rij in the vector connecting these sites and
ein/eout are the unit vectors corresponding to the incoming/outgoing polarizations. The polarization
prefactor shows that the 2M scattering should occur only in parallel polarizations, consistent with the
experimental observations.

Determination of J’s – The problem of quantitatively estimating the magnitude of the super-
exchange integrals is non-trivial in spite of the fact that there are several experimental techniques which
probed magnetic excitations like neutron scattering [17, 26], Raman [35, 36] and IR spectroscopy [37, 38].
For the latter technique, the authors claim that the strong mid-IR absorption features between 2500 and
4500 cm−1 are due to phonon assisted 2M excitations. The main problem was to reconcile by using only
the Hamiltonian from Eq. (1) the smallness of the zone boundary spin gap ∆S = 32 meV [17] with respect
to the magnitude of the one triplet energies close to the Brillouin zone center (see Ref. [26] and Fig. 4),
which is thought to determine the position of the 2M Raman peak [39] as well as the structure and
the large energy range in which the mid-IR magnon absorption is seen [37, 38]. The proposed solution
to this problem was to consider, besides J‖ and J⊥ the presence of a ring exchange Jring [40], which
is a higher order spin correction whose effect can be understood as a cyclic exchange of the spins on
a square plaquette determined by two adjacent ladder rungs, see Fig. 4. The net effect of including
such an interaction, which has the form Hring = 2Jring[(S1,i · S1,i+1)(S2,i · S2,i+1) + (S1,i · S2,i)(S1,i+1 ·
S2,i+1)− (S1,i ·S2,i+1)(S1,i+1 ·S2,i)], is to renormalize down the spin gap so that the ratio of the magnon
energy at the zone boundary with respect to the one at the zone center is decreased. The introduction
of Jring ≈ 0.1J⊥ helped fitting the INS data (see Ref. [26] and Fig. 4) and an even higher ratio is able
to better reproduce the experimental Raman and IR data (see Fig. 7). The parameter sets used for the
quantitative analysis of the spectroscopic data have J‖/J⊥ between 1.25 and 1.3 and a sizeable cyclic
exchange, Jring/J⊥ of about 0.25 - 0.3. The absolute value chosen for J⊥ is 1000 - 1100 cm−1. Both the
value of J and Jring are quantitatively consistent with those inferred for the 2D AF cuprates [41]. In the
latter case, the cyclic exchange was used in order to reproduce the neutron scattering findings regarding
the k dependence of the energy of the one-magnon excitations in the proximity of the Brillouin zone
boundary [41]. However, as opposed to the cuprates, the 2M seen in Fig. 6 at 3000 cm−1 cannot provide

Fig. 7. Left: IR absorption data (thick grey line) for two polarizations of the electric field along with theoretical
calculations for the phonon assisted two-magnon absorption (from Ref. [38]). The parameters used are: y =
J‖/J⊥ = 1.3, J⊥ = 1000 cm−1 and a ring/cyclic exchange (see text and Fig. 4) Jring/J⊥ = 0.2 Right: Calculated
(thick lines) Raman response for the two-magnon scattering using a perturbative approach from Ref. [39]. The
parameters used are: y = J‖/J⊥ = 1.25, J⊥ = 1100 cm−1 and Jring/J⊥ = 0.2. The experimental data (thin
lines) in La6Ca8Cu24O41 and Sr14Cu24O41 are taken from Ref. [35]. The upper two panels are calculated using
an additional super-modulation on the magnon dispersion due to the interaction induced by the charge ordering
in the chain structures (see the text for discussion). The parameter α specifies the kind of the superimposed
supermodulation.
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a direct determination of the super-exchange, even if no terms other than J‖ and J⊥ had to be included
in the spin Hamiltonian. This problem is related to the fact that, in spite of the theoretical results shown
in Fig. 7b which suggest good agreement with the experiment, the spectral shape of the sharp 2M feature
and its origin is still an open question; this issue will be discussed in the following.

Two-magnon relaxation – While in the case of 2D cuprates theory has problems with explaining
the large scattering width of the 2M excitation, in 2LL’s the situation is reversed; this is one of the most
interesting points made in Ref. [36]. To emphasize the 2M sharpness, we compare it in Fig. 8 to the
corresponding excitation in Sr2CuO2Cl2 which has one of the sharpest 2M feature among 2D AF copper
oxides [31] as well as to the multi-spinon scattering from a 2LL at quarter filling (which can be mapped
on a quasi 1D S = 1/2 AF chain), as seen in the high temperature phase of NaV2O5. For Sr2CuO2Cl2
the FWHM is about 800 cm−1 [31] and this is comparable, in relative units, with the large scattering
width observed for the spinon continuum. In Sr14Cu24O41 the width is only about 90 cm−1. The 2M
approximation for the magnetic light scattering in 2D cuprates, while giving a good estimate for the 2M
peak energy, cannot reproduce its spectral profile. This approximation makes the following three basic
assumptions:

• the ground state is a fully ordered Néel state;
• the spin pair excitations consist of states which have exactly two spins flipped with respect to the

Néel configuration;
• since the light wavelength is much larger than the unit cell, only combinations of (k,−k) magnons

are allowed.

This approach neglects quantum fluctuations which means that the true ground state will also contain
configurations of flipped spins and also that the spin-pair states will be admixtures of 2, 4, 6 ... spin flips in
the ground state. The narrow calculated width of the 2M was found, however, to be stable with respect to
the inclusion of higher order spin interactions. Neither exact diagonalization nor Monte Carlo simulations
were able to fully reproduce the 2M scattering width [42] although these calculations improved the results
obtained within the 2M approximation. It has been proposed by Singh et al. in Ref. [43] that it is the
quantum fluctuations effects inherent to the Heisenberg model with S = 1/2 which lead to the observed
broadening. The importance of intrinsic inhomogeneities and the role of phonons have also been invoked
in the literature.
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Fig. 8. Magnetic Raman continua in several AF spin S = 1/2 systems. Red: Sr2CuO2Cl2 (a 2D square lattice
with long range order). Green: NaV2O5 (a two-leg ladder at quarter filling factor which can be mapped on a
quasi 1D AF chain). Blue: Sr14Cu24O41 , the excitation seen in Fig. 7 but in this case taken with ωin = 2.65 eV
incoming laser energy.
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We were surprised that even in lower dimensionality (the structure determined by the 2LL’s is quasi-
1D), where the quantum fluctuations are expected to be stronger, the 2M Raman spectra display a
narrow profile, a phenomenon which questions the importance attributed to these effects in low spin
systems [43]. This prominent question triggered theoretical work, part of which is shown in Fig. 7. The
authors of Ref. [39] challenged our point and claimed a resolution in terms of both the existing quasi-
commensuration between the unit cell constants of the chain and ladder structures (7 cladder ≈ 10 cchain)
and the supermodulation induced by the charge order in the chain structures, which is shown in Fig. 2.
The calculation of the 2M Raman response without the modulation (lower panel in Fig. 7b) reveals indeed
a broader 2M peak [44], while inclusion of chain-ladder interaction renders a sharp 2M excitation because
of the backfolding of the dispersion of the elementary triplet (Figs. 1 and 2 in Ref. [39]). This opens gaps
at the points of intersection with the supermodulation wavevectors and will have a drastic effects in the
spectral shape because of the induced divergences in the density of states.

The agreement with the experimental data in Fig. 7 is pretty good; however, these claims have
recently been put to rest by a Raman experiment, Ref. [45], in the undoped 2LL compound SrCu2O3

(which contains no chains but only undoped 2LL’s), experiment which revealed a 2M peak as sharp as in
Sr14Cu24O41 . This clearly shows that the sharpness is related neither to the interaction between the two
substructures in Sr14Cu24O41 nor to the residual carriers in the 2LL structure of Sr14Cu24O41 but instead
it is due to intrinsic 2LL’s effects. Two major differences between the 2LL’s and 2D cuprates or 1D AF
spin chains are the facts that in the former the low energy relaxation channels are suppressed due to the
presence of a spin gap and also that the excitation spectrum of 2LL’s supports the existence of magnetic
bound states outside the continuum of excitations. Although this may be a plausible explanation, the 2M
singlet bound state peels off the continuum only at finite values of k, see Fig. 5, and besides that, the
energy at k = 0 is too small (2∆S = 64 meV = 512 cm−1) to account for the observed peak energy at
3000 cm−1. If the sharpness is from the hump-dip feature in the dispersion of the elementary triplet close
to the Brillouin zone center, Fig. 5b and the corresponding Van Hove singularities, it seems that such
divergences are found only at finite values of k while at k = 0 the spectral density is quite broad [28].
This is why we suggest here an explanation in relation to a possible spin density wave (SDW) modulation
which is intrinsic to 2LL’s and will lead to a backfolding of the magnon dispersion. This effect is similar in
spirit with the one proposed in Ref. [39] but this time due to intrinsic effects. Regarding the asymmetry
of the 2M feature it would also be worth considering multi-magnon interaction effects which may lead to
the asymmetric Fano-like shape of the sharp 3000 cm−1 feature due to the interaction with the underlying
magnetic continuum.

Noteworthy is the resemblance of the elementary triplet dispersion in 2LL’s and the k dependence of
the one-magnon excitation in La2CuO4 away from the Brillouin zone center. There are several articles,
some of them very recent [46], which stress the failure of the spin wave models in 2D cuprates arguing
that the ’physics’ of magnetic excitations is fundamentally different at low and high energies: while semi-
classical magnon theory holds at low energies, it has been argued that at short wavelengths the effect of
fluctuations is more pronounced and the spin dynamics suggest an underlying structure similar to the
one provided by 2LL’s, which is due to a SDW-like modulation in the 2D planes. Interestingly, the data
in Sr2CuO2Cl2 and NaV2O5 from Fig. 8 suggest instead a more pronounced similarity to the magnetic
scattering in 1D S = 1/2 AF chains. It seems at this point that not only the 2M profile in 2LL’s but
also the one in 2D cuprates constitute open questions which have recently received renewed attention. It
would be very interesting if the physics in these two systems is found to be related to each other.

Two-magnon excitation profile – A summary of our experimental study of the 2M dependence
on the incoming photon energy is shown in Fig. 9. Like the 2D cuprates, the Cu-O based ladders are
known to be charge-transfer (CT)-type Mott insulators, the CT gap being determined by the energy
difference between the Cu 3d and O 2p orbitals. A Raman resonant study is interesting since, along
with optical absorption, it gives information about the nature of the ground as well as of high energy
electronic states across the CT gap. This is because the photon induced spin exchange takes place in two
steps: a photoexcited state consisting of an electron-hole pair is created by the interaction of the system
in its ground state with an incoming photon and then this intermediate state collapses into an excited
magnetic state characterized by broken AF bonds. One expects therefore that such a process, in which
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the interaction with light occurs in the 2nd order perturbation theory, will show a strong dependence on
the incoming photon energy [31].

This is what we observe in Sr14Cu24O41 : the Raman data at T = 10 K are shown in Fig.9a. In
Fig. 9b we show the ratio of the 2M intensity in (cc) polarization with respect to (aa) configuration as
a function of ωin and in Fig. 9c the resonant Raman excitation profile (RREP) is plotted along with
the optical conductivity data provided by the authors of Ref. [10]. For both (cc) and (aa) polarization
the resonant enhancement has a maximum around 2.7 eV, about 0.7 eV higher than the CT edge. The
intensity is small for ωin < 2 eV and increases monotonically as the photon energy approaches the CT
gap, this increase being followed by a drop for excitations about 3 eV. The intensity displays an order of
magnitude variation as the incident photon energy changes in the visible spectrum. Besides the correction
for the optical response of the spectrometer and detector, by using the complex refractive index derived
from ellipsometry and reflectivity measurements, the ’raw’ Raman data were also corrected for the optical
properties of the material at different wavelengths.

We observe changes in the spectral shape of the 2M as the incident frequency is changed, in the
2LL’s case the 2M acquiring sidebands on the high energy side. These changes are more pronounced in
(aa) polarization where for instance the 2.65 eV spectrum (which is close to the edge seen in the a-axis
conductivity) shows a 2M as a gap-like onset of a continuum. While the fact that the 2M profile changes
substantially with ωin is also true for 2D cuprates, one can notice several differences too. One of them
is that the RREP in 2LL’s follows more closely the edges of the optical conductivity data. Moreover, if
in the case of cuprates two peaks were predicted (and confirmed experimentally) to occur for the 2M
peak at 2.8J in the RREP [47] (when the incoming energy is in resonance with the bottom and top of
the electron-hole continuum) from the data we show in Fig. 9c up to ωin = 3.05 eV we observe only
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one, rather broad, peak. It has been argued from numerical diagonalizations of finite clusters [48] that
this dissimilarity between the 2D cuprates and 2LL’s is due to the difference in the spin correlations
characterizing the initial and final excited magnetic states, i.e. the weight of the long ranged Néel type
spin-spin correlations in calculating the matrix elements of the current operator plays an important role.

It also turns out that, due to the special topology of 2LL’s, a study of the 2M RREP in conjunction with
an angular dependence of the 2M intensity in parallel polarization in 2LL’s can be helpful for determining
a relation between the ratio of the super-exchange integrals J‖ and J⊥ and microscopic parameters like
hopping integrals and on site Coulomb interactions [49]. Using the effective expression for the photon
induced spin exchange coupling mechanism, Eq. (2), taking into account the anisotropy of the coupling
constants denoted by A and B along the rung and leg directions and using the relationship between HFL

and the 2D Heisenberg ladder Hamiltonian from Eq. (1), one can derive the following angular dependence
of the 2M intensity for ein ‖ eout: I‖(ω, θ) = I(ω, θ)[cos2(θ)− A

B
J⊥

J‖
sin2(θ)] [49]. From this formula, J⊥/J‖

can be calculated if the A to B ratio is known. At angles θ 6= 0◦, 90◦ from an experimental point of view
one has to be careful that the different optical properties of the ladder materials along the a and c axes
will induce a non-negligible rotation of the polarization of the incident electric field inside the crystal
[50]. As we see from Fig. 9b the value of A/B is excitation energy dependent and our data suggest that
this ratio approaches a constant value in the preresonant regime. From Fig. 9 and using an anisotropy
ratio y = J‖/J⊥ = 1.25 (see Fig. 7) we obtain A/B ≈ 2.5 in the preresonant regime, which would be
compatible with an anisotropic local Cud-Op excitation and slightly different hopping parameters along
and across the ladder [49].

3 Effects of Temperature and Ca(La) Substitution on the Phononic and
Magnetic Excitations in Sr14Cu24O41

3.1 Temperature Dependent Electronic and Magnetic Scattering in Sr14Cu24O41

The effects of temperature and Ca(La) substitution for Sr discussed in this section set the stage for the
following section in which low energy Raman, transport and soft X-ray data argue for the existence of
density wave correlations in (Sr,La)14−xCaxCu24O41 compounds. In Fig. 10a we show the temperature
dependence of the c-axis conductivity σc(ω) and in panel (b) the Raman response in Sr14Cu24O41 for
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T =300 and 10 K. In both IR and Raman data large changes are observed as the Sr14Cu24O41 crystal
is cooled from room temperature. In Fig. 10a there is a strong suppression of spectral weight below an
energy scale of about 1 eV. The same figure shows two relevant energy scales of this system: one is the
CT gap around 2 eV which was discussed in connection to the resonance properties of the 2M , and the
other one is the activation energy inferred from the Arhenius behavior of the dc resistivity above about
150 K [52]. As for the optical sum rule, all the weight is recovered above the CT gap, within an energy
scale of ωc ≈ 3 eV. The rapid decrease of the conductivity in the region below 1 eV is correlated to the
high activation energy of about 180 meV (= 1450 cm−1 = 2090 K). Concomitant to this suppression,
which is surprisingly ’uniform’ in the 0 to 1 eV range, one observes the development of a broad mid-IR
feature and also a sharpening of the phononic features below 1000 cm−1. Interestingly, the position of the
mid-IR band seems to be close to the semiconducting-like activation energy revealed by the dc resistivity.
Fig.10b shows that a similarly large reduction in the overall intensity of Raman response takes place in
an energy range of at least 0.5 eV (4000 cm−1). The features which become sharp with cooling are the
single and multi-phonon excitations seen around 500, 1200 and 2400 cm−1 as well as the 2M feature at
3000 cm−1.

In Fig. 11 we show temperature dependent Raman data in two frequency regions: one below 1000 cm−1

(panel a) and one around 3000 cm−1 where the 2M feature lies (panel b). A different spectral shape than
in Figs. 6 and 10 is seen due to resonantly enhanced side band structures (see Fig. 9). The 2M peak is
weak and heavily damped at room temperature. Upon cooling we notice two main features: firstly, the
spectral weight increases by almost an order of magnitude, and secondly, the 2M peak sharpens from a
width of about 400 cm−1 at 300 K to 90 cm−1 FWHM at T = 10 K. Because J/kBT remains a large
parameter even at room temperature, the magnitude of the observed effects are surprising. For example,
in 2D cuprates the 2M peak remains well defined even above 600 K [53]. The side bands around 3660 and
4250 cm−1 observed for the ωin = 2.2 eV also gain spectral weight, proportionally with the sharp 2M
feature. Fig. 11b shows that these sidebands are situated about 650 and 2 ×650 cm−1 from the 3000 cm−1

resonance. Taking into account that strong phonon scattering characteristic of O modes is found at this
frequency, one may argue that these side bands are due to coupled magnon-phonon scattering and bring
evidence for spin-lattice interaction in Sr14Cu24O41 . These energy considerations favor this scenario
compared to one involving multi-magnon scattering because the magnetic continuum starts lower, at
2∆S = 510 cm−1. The latter interpretation remains however a reasonable possibility because in these
higher order processes the spectral weight can integrate from a larger part of the Brillouin zone and the
boundary of the 2M continuum is dispersive.
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Fig. 11. Temperature dependent Raman spectra in (cc) polarization for Sr14Cu24O41 . (a) Phononic spectra taken
with ωin = 1.5 eV (some phonons are truncated). (b) The 2M peak at 3000 cm−1 for different temperatures. The
spectra in this panel are taken using ωin = 2.2 eV
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The continuum shown in Fig. 11a also gets suppressed with cooling. Our data confirms the presence
of low lying states at high temperatures, observed also in NMR and c axis conductivity, Refs. [6, 51]
and Fig. 10. We observe that there is a sharp onset of scattering around 480 cm−1, close to twice the
spin-gap energy. The 495 cm−1 mode has been interpreted as evidence for Raman two-magnon scattering
[35]. However, the temperature dependence of this mode which follows that of the other phonons, the
similar suppression with cooling seen not only below this energy but also at higher energies in the 650 to
900 cm−1 region and the absence of magnetic field effects contradict this proposal.

The connection between the low and high degrees of freedom in Fig. 11a-b is presented in Fig. 12.
The increase of the electronic Raman background intensity with heating is correlated with the damping
of the 2M peak at 3000 cm−1. The introduced low energy states reduce the lifetime of the magnetic
excitation due to additional relaxational channels provided by the small amount of ladder self-doped
carriers. We note that the drastic changes with temperature take place roughly above 150 K while below
this temperature the variation with temperature is much weaker. This is the temperature at which the
dc resistivity changes its activation energy from 2090 K to about half its value, 1345 K [56]. T∗ = 150 K
is also the temperature at which the charge ordering in the chain structures is fully established [16, 18]
suggesting an interaction between chains and ladders, possibly due to a charge transfer between these
systems. It is possible that this charge transfer takes place also as function of temperature and that it
gets suppressed below T∗.

3.2 The Chain-Ladder Interaction in Sr14Cu24O41 : Superstructure Effects in the
Phononic Spectra

Raman data in Sr14Cu24O41 reveals the presence of a very low energy excitation in parallel polarizations.
At low temperatures this mode is found around 12 cm−1 and we observe a softening of about 20%
with warming up to 300 K. The temperature dependence of the Raman spectra is shown in Fig. 13
for both (cc) and (aa) polarizations. An excitation at similar energy is seen also in IR absorption data
[54] consistent with the lack of inversion symmetry in the Sr14Cu24O41 crystal. Applied magnetic fields
up to 8 T do not influence the energy of this excitation which suggests that its origin is not magnetic.
This peak is absent in x = 8 and 12 Sr14−xCaxCu24O41 crystals but it is present around 15 cm−1 in the
La6Ca8Cu24O41 compound [55]. These properties along with the unusually low energy make us interpret
this excitation as a phononic mode associated with the superstructure determined by the chain and the
ladder systems. The chain-ladder commensurability given by the approximate relation 7 cladder = 10 cchain

will result in a back-folding of the phononic dispersions, which in the case of the acoustic branches will
lead to a low energy mode. The high effective mass oscillator is understood in this context as a collective
motion involving the large number of atoms in the big unit cell of the Sr14Cu24O41 crystal.

In Fig. 13b-c we plot the temperature dependent energy and width of this low energy phonon. The
crossover below a characteristic temperature of about 120 - 150 K mentioned in the previous subsection
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Fig. 13. (a) Temperature dependence of a low energy Sr14Cu24O41 phonon taken with ωin = 1.65 eV in (cc)
(upper panel) and (aa) (lower panel). Points represent Raman data and the solid lines are Lorentzian fits. (b)
The dependence on temperature of the phonon intensity in (cc) (filled red circles) and (aa) (empty blue circles)
polarizations. (c) The phonon energy (left scale) and the width (right scale) of the phononic excitation from (a).
Dashed lines in panels (b) and (c) are guides for the eye.

is emphasized again by the these data. The energy of the peak increases rather uniformly with decreas-
ing temperature from 300 to about 15 K but its FWHM shows a variation with temperature which is
diminished below 150 K. The behavior of the integrated intensity of this mode is different in (cc) and
(aa) polarizations. Fig. 13b shows that in (cc) configuration a kink appears about 150 K in the tem-
perature dependent spectral weight while a maximum is seen in the (aa) polarized spectra around this
temperature.

In the scenario presented above the presence of the low energy mode Fig. 13 is evidence of ladder-
chain interaction. Such an excitation should be sensitive to disorder and even slight modifications in the
crystal structure as happens if Sr is substituted by Ca/La. Symmetry arguments discussed in the next
subsection confirm the requirement to consider the full crystal structure for the phononic analysis in
Sr14Cu24O41 and the fact that the disorder introduced by Ca substitution smears out the rich phononic
spectra due to the superstructure. The absence of this mode in Ca substituted crystals thus supports our
interpretation.

3.3 Disorder Induced by Ca(La) Substitution

This part deals with the effects of inter Cu-O layers cation substitution. If Sr is replaced by Ca then
the nominal hole concentration in Sr14−xCaxCu24O41 does not change, but what may happen is that the
amount of holes in the chain and ladder structures gets redistributed [10, 11]. Sr2+ substitution by La3+

reduces the amount of holes and in La6Ca8Cu24O41 the chains and the ladders are at half filling. So in
analyzing the spin/charge response of the 2LL’s one has to consider both the doping and the disorder
effects induced by inter-layer cation replacement.

An investigation of these effects is certainly worth pursuing in the context of the constraints imposed
by the low dimensionality on the charge dynamics and the occurrence of superconductivity. Most of the
studies in the literature have been focussed on the spin and charge dynamics in pure crystals, although
cation substitution is also a source of a random potential. It is known that in 1D an arbitrary random field
localizes all electronic states [57] and, in view of the existence of collective excitations of the charge density
wave type, pinning effects due to disorder change qualitatively the dc and the finite frequency transport
properties. X-ray structural analysis show that the ladder interatomic bonds are modulated upon Sr
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replacement by Ca [58] and it was pointed out in a Raman study [59] that the phononic width increases
with Ca concentration in Sr14−xCaxCu24O41 . Theoretical work shows that the gapped phases of 1D spin
systems like 2LL’s or dimerized chains are stable against weak disorder and magnetic bond randomness
[60]. However, in the doped case, superconductivity in the d-channel was found to be destroyed by an
arbitrarily small amount of disorder.

Ca substitution and phononic scattering – If inhomogeneous broadening plays an important role
it has to be seen in all the sharp spectroscopic features. What we try to argue in the following is that the
width of both cation and the Cu-O plane modes are renormalized with Ca content. Fig. 14a shows low tem-
perature phononic Raman spectra in the 0 - 700 cm−1 energy region. The data is taken in (cc) polarization
with the excitation energy ωin = 2.57 eV; the higher the incoming photon energy the more pronounced is
the phononic resonant enhancement. For Sr14Cu24O41 we observe a total of 22 clearly resolved phononic
modes extending from 25 to 650 cm−1. For La6Ca8Cu24O41 and Sr14−xCaxCu24O41 crystals the features
characteristic of O vibrations in the 400 < ω < 700 cm−1 region broaden into an unresolved band and
the rich fine structure below ω < 400 cm−1 is smeared out. Clear evidence for the interaction between
the chain and the ladder structures in Sr14Cu24O41 can be inferred from symmetry considerations alone.
If these two units were considered separately a total number of six fully symmetric phonons should be
observed in (cc) polarization [61], three from the chain structure, Amma (D17

2h) space group, and three
from the ladder structure, Fmmm (D23

2h) space group [1]. If one considers the full crystal structure, two
’options’ are available. The first one is to take into account a small displacement of the adjacent Cu-O
chains with respect to each other (see Fig. 3 in Ref. [1]) and analyze the phonons within the Pcc2 (C3

2v)
space group which will give a total of 237 A1 modes. The second one is to neglect this small displacement,
as it is the case of Sr8Ca6Cu24O41 which belongs to the Cccm (D20

2h) centered space group [1] and this
approach renders a number of 52 A1g modes. The 22 observed modes in Sr14Cu24O41 show that one has
to include the chain-ladder interaction and the consideration of the higher Cccm symmetry is sufficient.
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Marked with asterisks in Fig. 14 are three modes in the region between 250 and 320 cm−1 which show
a blue shift consistent with the lower mass of Ca atoms and the reduction in the lattice constants upon Ca
substitution [12]. Based on the energy shift and on previous phonon analysis done for the (SrCa)2CuO3

[62] compound we assign the modes to Sr/Ca vibrations. The FWHM of the 255 cm−1 phonon in
Sr14Cu24O41 is 4 cm−1 as compared to 16 and 10 cm−1 in the x = 8 and 12 Sr14−xCaxCu24O41 samples
respectively. We observe a similar behavior in the phononic modes originating from Cu-O planes. Three
prominent features are seen in the 550 – 600 cm−1 region for the Sr14Cu24O41 crystal. We assign the
mode with intermediate energy around 565 cm−1 to Oladder vibration. The lower and upper modes
around 545 and 585 cm−1 have frequencies close to vibrations of the O atoms in the chains as observed
in (SrCa)2CuO3 and CuO [61, 62] compounds. Fits for the 550 cm−1 band in SCCO crystals reveal that
the FWHM of the 565 cm−1 mode increases from 9 cm−1 for Sr14Cu24O41 to 27 and 22 cm−1 for x = 8
and 12 Sr14−xCaxCu24O41 crystals, see the inset of Fig. 14a. This is similar to what happens to the 255
Ca/Sr mode suggesting that the Sr14−xCaxCu24O41 crystals become again more homogeneous at higher
Ca substitution level. The data for the LCCO crystal shows that in this material phonons are affected
the strongest by disorder which is most likely due to the high La mass and atomic size compared to Ca
or Sr atoms.

Ca substitution and magnetic scattering – Regarding the sharp 2M Raman resonance, Fig. 14b,
one can see dramatic changes taking place with Ca substitution at T = 10 K and that these changes
also affect the 2M sidebands. In Sr14Cu24O41 the FWHM is 90 cm−1. Ca substitution leads to hardening
and to substantial broadening of the magnetic peak accompanied by a drastic decrease in its scattering
intensity. One Ca atom in the formula unit of Sr14−xCaxCu24O41 increases the spectral width by 30%,
see inset of Fig. 14b. This effect can be ascribed to the intrinsic inhomogeneity rather than a marginal
effect on the lattice constants and hole transfer from the chains to the ladders [10]. The FWHM in x =
8 Sr14−xCaxCu24O41 and La6Ca8Cu24O41 are about the same within the error bars which is remarkable
because the latter is an undoped material so the width of the peak seems not to be related to the presence
of carriers in the ladders. Comparison of our data in La6Ca8Cu24O41 and SrCu2O3 [45], both containing
2LL’s at half filling, shows clearly that out-of-plane inhomogeneities have major impact on the magnetic
properties of the ladders.

By comparing Fig. 11b and 14b One can also note a resemblance between the effect of temperature
in Sr14Cu24O41 and Ca substitution in Sr14−xCaxCu24O41 . Fig. 15 shows that temperature effects in
La6Ca8Cu24O41 and Sr6Ca8Cu24O41 are suppressed compared to Sr14Cu24O41 . In this sense one could
introduce an ’effective’ temperature associated with the cation substitution level. A comparison to 2D
cuprates is again interesting: in the latter case the 2M is broad to start with even in pure materials, but
a different number of cation types between the Cu-O layers (higher in insulating Bi2Sr2Ca0.5Y0.5Cu2O8

than for instance La2CuO4) does not lead to qualitative changes in the 2M width [32].
The data in Fig. 14b suggest that an appropriate phenomenological model to describe the ladder

Hamiltonian in Ca doped crystals is H =
∑

leg J ij
|| Si · Sj +

∑

rung J ij
⊥Si · Sj where the super-exchange

integrals J ij in the lowest order have a contribution proportional to the relative local atomic displacements
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Fig. 15. Two-magnon scattering in La6Ca8Cu24O41 and x = 8 Sr14−xCaxCu24O41 in (cc) polarization for three
temperatures.
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uij according to J ij(u) = J0 + (∇J)uij . The effects of thermal fluctuations on the super-exchange
integrals Jij can be included in a similar phenomenological approach [63] which could explain the strong
resemblance between the Ca substitution and temperature seen in Figs. 14b and 15. We expect the ratio
< J⊥ > / < J|| > to change with Ca content as structural studies show that the Cu-O bonds along
the rungs are less affected by Ca substitution than the Cu-O bonds parallel to the ladder legs [58].
Also the hardening of the magnetic peak from 3000 cm−1 in Sr14Cu24O41 to about 3375 cm−1 in x = 8
Sr14−xCaxCu24O41 is consistent with the reduction in the lattice constants at higher Ca substitutional
level which will lead to a higher super-exchange J , a parameter very sensitive to the interatomic distances
[64].

4 Density-Wave Correlations in Doped Two-Leg Ladders

4.1 Density Waves: Competing Ground State to Superconductivity

So far we have been investigating mainly the magnetic properties of 2LL’s around half filling factor
and analyzed the effects of temperature and Sr substitution especially in terms of their influence on the
high energy 2M scattering around 3000 cm−1. We observed that both the temperature and the isovalent
cation substitution produce drastic changes in the optical and Raman spectra from far IR up to energies of
several eV. These properties, along with the established metal-insulator transition found around 60% Ca
doping, the occurrence of superconductivity and the similarities with 2D cuprates, nurture the hope that
a study of low energy physics in Sr14−xCaxCu24O41 may reveal universal aspects related to the nature of
the ground states in low dimensional correlated spin S = 1/2 systems. It is the purpose of this section
to bring evidence for the existence of density wave correlations in doped 2LL’s at all Ca substitution
levels [55]. Ground states with broken translational symmetry have been discussed in the context of low
dimensional systems [9]. Examples are states which display a long ranged oscillation of the charge and/or
spin densities as well as ones which acquire a topological bond order due to the modulations of the inter-
atomic coupling constants, for example of the super-exchange integrals. It has been indeed found that
the charge density waves (CDW) and superconductivity are the predominant competing ground states
and the balance between them is ultimately determined by the microscopic parameters of the theoretical
models [3, 4].

So, what are the low energy excitations one expects from a doped 2LL? Most of the theoretical
studies of 2LL’s consist of numerical evaluations, especially exact diagonalization (ED) and density matrix
renormalization group techniques (DMRG), performed within the t‖ − J‖, t⊥ − J⊥ model, see Fig. 16,
but not taking in to account the long range Coulomb interactions. It is interesting to discuss first the
cases corresponding to only one or two holes in the ladder structure. If one hole is present on a ladder
rung (Fig. 16a) it can sit on a bonding or antibonding orbital. Hopping will lead to bands separated
roughly by 2t⊥ and a bandwidth proportional to t‖ [65]. How tight is the charge bound to the remaining
free spin? This question is connected to the problem of possible spin-charge separation. Evaluations of
hole-spin correlations on a 2 × 10 cluster suggest that the unpaired spin remains tightly bound to the
injected hole [65], so that this composite state carries both charge and spin, in this sense being similar
to a quasi-particle. This is in contrast with the spin-charge separation in the 1D AF chain.

If two holes are present (Fig. 16b) there appears a property which seems to be very robust for 2LL’s:
pairing. The following discussion can be intuitively understood starting from the strong coupling limit
but studies of finite clusters within the t‖ − J‖, t⊥ − J⊥ model show that this qualitative discussion holds
to the relevant isotropic limit J = J‖ = J⊥ and t = t‖ = t⊥. If one additional hole is injected in the
ladder, it will tend to align on the same ladder rung, see Fig. 16b, in order to minimize the magnetic
energy [3, 4]. The lowest band will be generated by the coherent propagation of hole pairs and it is found
in the spin singlet channel. At finite energies there will be continua of electronic states generated by
breaking the pairs, the singlet and the triplet states being almost degenerate when the holes are far apart
[65]. One can note that in the case of 2LL’s it is the purely spin-spin correlations which effectively lead
to hole pairing and not an explicit hole-hole attractive interaction and also that the main energy gain
due to pairing is given by the magnitude of the spin gap. The ’easy’ pairing and the kinetic energy gain
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Fig. 16. Intuitive understanding of the origin of hole pairing in 2LL’s in the strong coupling limit (J⊥ � J‖).
If an initial hole sits on rung ’i+1’ (panel a) the second added hole (panel b) sits on the same rung in order to
minimize the number of broken AF bonds.

of the paired holes when pairs are far apart from each other is a non-trivial difference with respect to the
2D cuprates in the sense that in the latter case evaluations prompted by the above arguments lead to
macroscopic phase separation.

Since the spin gap ∆S is to some degree a measure of the hole binding energy it is interesting to
discuss what is its evolution with doping. In the undoped case the lowest triplet excitation is the branch
with a minimum at π shown in Fig. 5 and its magnitude is governed by J⊥. The spin gap remains
substantial at isotropic coupling, relevant for experiments, and in this case it is known exactly to be J/2
in the model of Eq. (1). This excitation evolves continuously with doping. For instance, calculations on a
2 × 24 cluster at 1/8 doping and isotropic coupling shows that the spin gap is about 0.275J , about half
of the value in the undoped case [66]. Interestingly, pairing generates a different type of singlet-triplet
transition [65, 66]. This excitation, present only in the doped case, will consist of breaking of a singlet
hole pair into two separate quasi-particles in the triplet channel. The different kinetic energy gain of the
separate holes versus the magnon in the undoped case will lead to different energies of these two types of
magnons. It was argued [65] that the spin gap evolves discontinuously in 2LL’s because it is the 2nd type
of magnon which costs less energy. Later ED and DMRG work [67] confirmed this point and showed that
in a relevant parameter range the energy of this new type of spin-gap is smaller than the pair breaking
continua because a triplet can hybridize with a state formed by two holes (one in bonding and one in
antibonding orbitals) forming bound S = 1 magnon-hole states.

Once the stability of the hole pair is confirmed to exist in the relevant ranges of the microscopic
parameters, it is up to the estimation of residual interactions between the hole pairs and spins to determine
what kind of ground state is chosen. Superconductivity fluctuations were probed within the t − J model
by evaluating numerically the pair-pair correlation function, a measure of the stability of the motion of
the hole pair in the spin-gapped phase. This function, which is to be evaluated in the limit of l → ∞,
is defined as P (l) = 1

N

∑

i < ∆†
i∆i+l > where ∆i is the pair destruction operator at site ’i’ given

by ∆i = 1√
2
(ci1,↑ci2,↓ − ci1,↓ci2,↑) (here the ’c’ operators are defined within the subspace of no double

occupancy). Early work showed an increase in the pairing tendency as the ratio J⊥/J‖ was increased [5]
It has been found for a 2×30 cluster at n = 1/8 doping that SC correlations are dominant and they decay
algebraically with l [68]. The exponent was found to be smaller than one while density-density correlations
were observed to decrease as l−2 implying that SC is the dominant phase. In the same system, by using
Green’s function techniques, the frequency and wavevector dependence of the superconducting gap [66]
showed a structure with nodes, much like the d-wave pairing symmetry in 2D cuprates.

Pairing does not necessarily mean superconductivity. Another possibility is that the bound (or sin-
gle) holes form a spatially ordered pattern, i.e. a CDW ground state. It has been argued from DMRG
calculations that a phase diagram of the isotropic t − J 2LL’s, in a relevant range given for instance
by J/t < 0.4, will have as generic phase one with gapped spin modes and gapless charge mode [69].
This ’C1S0’ phase [70] is characterized by d-wave like pairing and 4kF CDW correlations, with super-
conductivity being the dominant phase [69]. Note that this 4kF CDW renders a wavelength which is half
of the one in conventional Peierls transition. Phase separation will occur roughly at values J/t > 2.5
[65, 69]. These numerics also argue that besides these two phases, there are small fully gapped regions
(for both spin and charge sectors), to be found generally at commensurate dopings, where a CDW occurs
[69]. The characteristic wavevector of this state is given by 2(kFb + kFa) where kFb/kFa stand for the



Collective Spin and Charge Excitations in (Sr,La)14−xCaxCu24O41 Quantum Spin Ladders 19

Fermi wavevectors of the bonding/antibonding electronic orbitals, discussed in the paragraph related to
the charge dynamics in a ladder with one hole. Interestingly, a finite spin gap is not found to be crucial
for the existence of such a CDW so, if the spin gap determines the pairing, the hole crystal can be made
either out of single hole or out of hole pairs [69].

On the experimental side, in (Sr,La)14−xCaxCu24O41 the study of low energy physics is encumbered,
compared to 2D cuprates, by the following ’non-intrinsic’ facts:

• The structure is quite complicated due to the presence of the chains and ladders. We found that these
subsystems interact, so one expects that supermodulation will affect carrier dynamics.

• Sr14Cu24O41 has a finite hole concentration in the ladder structure to start with. Ca substitution (and
maybe temperature) redistributes the charges between chains and ladders but up to now there is no
accurate quantitative determination of this effect. On the contrary, there are conflicting views in the
literature [10, 11].

• The effect of O stoichiometry at the crystal surface may be important in accurately determine the
carrier concentration; besides, fresh surfaces are not easy to obtain because these materials do not
cleave in the (ac) plane.

The problem of what happens with the spin gap in the doped ladder is an open issue from an
experimental point of view. On one hand neutron scattering finds ∆S = 32 meV in both Sr14Cu24O41 [17]
and x = 11.5 Sr14−xCaxCu24O41 [71] which says that the spin gap does not change its value. On the other
hand, from the Knight shift (proportional to the uniform susceptibility) and the spin-lattice relaxation
data, NMR measurements find a decrease by about 50% of the ladder spin gap [20]. Mayaffre et al., by
using the same technique, tried to relate directly the disappearance of the spin gap to the occurrence of
superconductivity under pressure [72]. Although a finite spin gap is a central issue which underlies the
up to date theories predicting that doped ladders are superconducting, it is still not quite clear what the
origin of the discrepancy between the INS and NMR data is.

4.2 Electromagnetic Response of Charge Density Wave Systems

The purpose of this section is to discuss the main properties of CDW systems and their characteristic
excitations. In the CDW state a gap opens at the Fermi energy and this is observed in dc transport as a
metal insulator transition taking place at Tc. Due to the change in the lattice constant there also are new
phononic modes allowed in the CDW state. In real systems, which are not strictly 1D, it is possible that
not all the Fermi surface gets gapped, so the metallic behavior can continue below Tc, as is the case of
NbSe3. Since the CDW transition involves ionic motions, it can be directly probed by X-rays or neutron
scattering [73].

Excitations out of the CDW state – One feature which can be seen in the optical absorption
spectra is due to the excitations of electrons across the CDW gap 2∆. This belongs to the single particle
channel. Since the Debye energy is much smaller than the Fermi energy the superconducting gaps from
BCS theory are typically smaller than the gap excitations in the CDW state. For instance, in blue bronze
(K0.3MoO3) which is one of the most studied quasi-1D CDW materials, this energy is found at about
2∆ = 125 meV [75]. There are also collective excitations out of the condensate and they are related
to the space and time variations of the complex order parameter. Excitations occur due to both phase
(phasons) and amplitude (amplitudons) fluctuations. The interest is to understand the long wavelength
limit of these excitations. As for the amplitude mode, its energy ωA in the limit q → 0 is finite. An
oscillation of the gap amplitude δ(∆) will also lead to an oscillation of the ionic positions δ(u). The
decrease in the condensation energy, δ(Econd) = D(εF )δ(∆2)/2 will be equal to the extra kinetic energy
associated with ionic displacements, MNω2

A(q = 0)δ(u2)/2 where M, N are the ionic mass and number
respectively. As a result one obtains a finite value for ωA(q → 0).

The situation is different for the long wavelength phase mode. Such motion is a superposition of
electronic charge along with ionic oscillations which leads to a high ’effective mass’, m∗. In the q → 0 limit
involves a translational motion of the undistorted condensate so it will cost no energy. Its dispersion in
the q → 0 limit is given by ω2

Φ(q) = (m/m∗)v2
F q2 [76]. Since phase fluctuations involve dipole fluctuations

due to the displacements of the electronic density with respect to the ions the phason is a feature which
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will be seen in the real part of the optical conductivity data. The amplitude mode at q → 0 does not
involve such displacements so it is expected to be a Raman active mode.

Most interesting is that in the ideal case considered here the phase mode is current carrying and it
can slide without friction [74]. As a result this excitation will be seen as a δ function at zero frequency.
The spectral weight of this peak is given by m/m∗ and this is stolen from the single particle conductivity
which becomes an edge, instead of a singularity reflecting the divergence in the density of states [76], see
also Figs. 8 and 9 in Ref. [75]. The interaction with impurities or lattice commensurabilities destroys the
infinite conductivity, and the phase mode will be pinned. As a result, this excitation will be shifted to
finite frequencies which characterize the particular impurity potential. In Fig. 17 is shown the example
of the blue bronze, the pinning mode as well as the gap feature being seen around 2 and 1000 cm−1

respectively.
Zero frequency and microwave transport in the CDW state – The existence of a gap and low

energy collective excitations leads to several other properties which were seen in dc and finite frequency
(typically in the microwave region) conductivity. In a I − V characteristic one can talk roughly speaking
about three regimes. At low electric fields there is an Ohmic behavior and the conductivity at finite
temperatures will be due to thermally excited electrons (normal carriers) out of the condensate. Above a

threshold field, E
(1)
T , related to the magnitude of the pinning potentials, the contribution of the conden-

sate sets in. The CDW starts moving as a whole and this motion is accomplished through distortions of

the phase and/or amplitude of the condensate. At high fields, above some other threshold field E
(2)
T , the

external forces cause a fast sliding motion of the CDW which ’ignores’ the underlying pinning potentials
and the current increases very steeply (almost infinite differential conductance) for small variations of the
applied voltage, see Fig. 17b. This regime is reminiscent of the ideal case where ’Fröhlich superconduc-
tivity’ should occur. The I − V curve in 2nd and 3rd regimes is non-linear and temperature dependent.
Notable is that for an applied dc voltage, the motion of the CDW will also lead in a clean sample to a
finite frequency component of the current. The fundamental frequency of this oscillatory component is
directly related to the wavelength of the density wave.

Low frequency CDW relaxation – Another low energy feature observed in many well established
CDW compounds is a relaxational peak which has a strong temperature dependent energy and damping
related to the dc conductivity of the material. This loss peak is seen typically in the microwave region
at energies much lower than the pinning frequency. For example in K0.3MoO3 the frequency range is
104 - 106 Hz for temperatures between 50 to 100 K while the pinned mode is roughly at Ω0 ≈ 60 GHz
see Figs. 18d and Figs. 17a respectively. In Ref. [79] the author proposes a scenario to reconcile the
observations at low and high frequencies, a summary of the results being shown in Fig. 18a-c. The
interpretation of the damped excitation is that it is a longitudinal density wave relaxational mode due to
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Fig. 17. Collective excitations and transport in K0.3MoO3. (a) Optical conductivity in the CDW phase from
Ref. [75] showing the pinned mode at Ω0 and the single particle edge starting at 2∆. Many new electron-phonon
coupled modes appear in the mid-IR region below the transition. (b) The observation of the second threshold,
Fröhlich superconductivity, in K0.3MoO3 (from Ref. [77]).
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the interaction with normal carriers. It is argued that this mode, which should not be seen in the transverse
channel, is seen however in the dielectric response because of the non-uniform pinning which introduces
disorder. By making the wavevector k, according to which the modes can be classified as transverse
or longitudinal, a ’not so good quantum number’, disorder mixes the pure longitudinal and transverse
character of the excitations. In other words, breaking of the selection rules make the longitudinal modes
appear as poles, rather than zeros, of the dielectric response function.

The main results of the theory in Ref. [79] are shown in Fig. 18 where the CDW dielectric function is
plotted as a function of frequency. The distribution of pinning centers (a measure of disorder) is modeled
by a function gn(x) = (nn+1/n!)xn exp(−nx) which is peaked at x = 1 and satisfies gn→∞(x) = δ(x− 1).
In Fig. 18a one can see that the disorder leads to the appearance of a mode at lower frequencies which
steals spectral weight from the pinning mode situated at the average frequency Ω0. The stronger the
disorder, the higher is the spectral weight redistribution between the two modes. Panels (b) and (c) in
Fig. 18 show the real and the imaginary part of the CDW dielectric function for a given n. They are
related by Kramers-Krönig relations, so the drop in Re(ε) leads to a peak in Im(ε). These data are plotted
for several values of the relaxational time τ1 which mimics (through the dependence on conductivity, see
the caption of Fig. 18) a linear variation in temperature. Decreasing temperature leads to a decrease in
conductivity and a higher τ1 and to the softening of the relaxational peak which moves away from Ω0.

CDW coupling to the uncondensed carriers – Here is a simplified version for the derivation of the
longitudinal screening mode shown in Fig. 18. In this approach the CDW is modeled by an oscillator with
a characteristic pinning frequency Ω0 and we neglect internal distortions. The only other ingredients of
the model are the presence of a finite electron density corresponding to thermally activated quasi-particles
and the assumption that the interaction between these two fluids is only via an electromagnetic field.
The calculation of the longitudinal CDW modes as well as the coupling to the normal, uncondensed,
electrons follows almost identically the treatment of longitudinal phonons and their coupling to plasma
oscillations in metals. In the following, u is a uniform displacement of the CDW (in a real crystal this
will be within a volume determined by the longitudinal and transverse correlation lengths), ρc and m∗

are the CDW charge and mass densities and γ0 is an intrinsic damping coefficient. The time derivatives
for oscillations at a given frequency ω are replaced by ∂/∂t → −iω. The derivation can be made using
the general relations of the Born and Huang model [80]:

−ω2u = −Ω2
0u + iωγ0u +

ρc

m∗E (3)

P = ρcu +
ε∞ − 1

4π
E (4)

Here ε∞ takes care of the background carrier contributions arising from interband transitions. In the
absence of carriers, neglecting the damping and using the electrostatic approximation (∇×E = 0 which
means that the field is purely longitudinal and as a result E = EL), these equations allow us to determine
the characteristic transverse and longitudinal frequencies. The equation −ω2uT = −Ω2

0uT (because
ET = 0) allows the identification Ω0 = ΩT , i.e. the frequency of the transverse mode. The longitudinal
modes will generate a finite electrostatic field. Eq. (4) and Gauss’ law ∇(E+4πP) = 0 lead to ∇(4πρcuL+
ε∞E) = 0 so E = −4πρcuL/ε∞. Plugging this relation in Eq. (4) one obtains −ω2uL = −Ω2

0uL −
4πρ2

c/ε∞m∗uL which gives the frequency of the longitudinal mode Ωin =
√

Ω2
0 + Ω2

p/ε∞ where the

plasma frequency is given by Ω2
p = 4πρ2

c/m∗.
What is the dynamics of the CDW in an external field E0 of frequency ω? In the transverse channel the

force in the right hand side of Eq. (3) will be ρcE0/m∗ leading to uT = [(ρc/m∗)/(−ω2 + Ω2
0 − iωγ0)]E0.

Using Eq. (4), the relation ε = 1+4πχ, where χ = P/E, as well as the fact that the conductivity is given
by ε(ω) = 1 + 4πiσ/ω, one obtains for the collective contribution to the dielectric function and the real
part of the conductivity:

εCDW (ω) =
Ω2

p

Ω2
0 − iωγ0 − ω2

σCDW (ω) =
1

4π

−iωΩ2
p

Ω2
0 − iωγ0 − ω2

(5)

These equations will render a peak at the pinning frequency Ω0 in both ε(ω) and σ(ω).
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Fig. 18. The dependence of the real and imaginary part of the CDW dielectric function on frequency on the
log scale. Panels (a), (b) and (c) show theoretical results from Ref. [79]. Ω0 and Ωp are the pinning and the
CDW plasma frequencies, γ0 is an intrinsic damping parameter and V0 in panel (a) is the pinning potential.
τ0 and τ1, defined by τ0 = γ0/V0 and τ1 = γ/V0 = ρ2

c/σV0 (with σ and ρ being the dc conductivity and the
CDW density), are characteristic relaxational times. The parameter n represents a measure of the distribution in
pinning frequencies: n → ∞ means that there is only one mode in the distribution, the smaller n is, the broader
the distribution. Panel (d) shows experimental determination of the real and imaginary parts of the dielectric
function for three representative temperatures (data from Ref. [78]).

We deal now with the dynamics of the longitudinal modes in the presence of carriers. One has to worry
in this case about the associated internal fields and screening effects. One can derive a relation between
the CDW displacement uL and the local field which should become E = −4πρcuL/ε∞ in the limit of zero
dc conductivity. The only difference now is that the first Maxwell equation changes to ∇(E+4πP) = ρqp,
where ρqp is the quasi-particle density. The continuity equation −iωρqp +∇j = 0 and Ohm’s law j = σqpE
lead to the relation iωρ = σqp∇E so, using Gauss’ law, one obtains ∇(4πσqpE − iωE − 4πiωP) =
0. Inserting the expression for polarization from Eq. (4) and taking into account that we deal with
longitudinal fields one obtains:

E =
4πiωρc

4πσqp − iωε∞
uL (6)

Obviously, for σqp = 0, Eq. (6) gives the result of obtained in the previous paragraph in the absence of
carriers. For calculating the longitudinal response, one has thus to replace E in (3) with the sum of the
external field E0 and the polarization field given by (6) obtaining a linear relation between uL and E0.
Using (4) one obtains the CDW contribution to the longitudinal dielectric function εL, which is relevant
for Raman scattering, as:

εL(ω) =
Ω2

p

Ω2
0 − ω2 − iγ0ω − iωΩ2

p

4πσqp−iωε∞

(7)

In the limit of high frequencies this function has a pole at
√

Ω2
0 + Ω2

p/ε∞ corresponding to the CDW

plasmon and which is the energy of the longitudinal collective mode. In the limit of low frequencies and
neglecting the intrinsic damping γ0, Eq. (7) reduces to the following relaxational mode:
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εL(ω) =
A

1 − iωτ
with A =

Ω2
p

Ω2
0

and Γ =
1

τ
= 4πσqp

Ω2
0

Ω2
p

= 4πσqp
1

ε0 − ε∞
(8)

Equations (5) and (8) describe the features seen in Fig. 18. The proportionality in (8) between Γ and
the dc conductivity is the result of normal carrier backflow which screens the collective polarization and
dissipates energy, suffering lattice momentum relaxation.

4.3 Density Waves in Sr14Cu24O41

Low energy transport and Raman

In Fig. 19a we show the components of the dielectric response ε = ε1 + iε2 as a function of frequency (in
log scale) for several temperatures [56]. The imaginary part shows strongly damped, inhomogeneously
broadened peaks whose energies are temperature dependent. These relaxational modes lead to variations
in the real part of the dielectric function ε1 up to 300 K and even above. This data resembles with the
dielectric response measured in the CDW compound K0.3MoO3 which is shown in Fig. 18. Fig. 19b shows
Raman data in a higher temperature range. Similarly to Fig. 19a we observe an overdamped feature
which moves to lower frequencies with cooling. This excitation disappears below our lower energy cut-off
of about 1.5 cm−1 (equivalent to 50 GHz or 0.185 meV) below about T = 200 K. The Raman response
function can be well fitted with the expression:

χ′′(ω, T ) = A(T )
ωΓ

ω2 + Γ 2
(9)

The temperature dependence of the peak intensity is shown in the inset of Fig. 19. A(T ) decreases by
about 60% from 300 to 640 K. The temperatures shown in this figure include laser heating effects and
they were determined from the ratio of Stokes anti-Stokes spectra for each temperature.

The data in Fig. 19a also allow the extraction of a characteristic transport relaxational time τ(T ) at
every temperature by a fit to a relaxational type behavior. Using this result, in the entire temperature
range the dielectric response between 20 Hz and 106 Hz from Fig. 19 can be scaled on a universal
generalized Debye relaxational curve given by:

ε(ω) = ε∞ +
ε0 − ε∞

1 + [iωτ(T )]1−α
(10)

The parameter α characterizes the width of the distribution of relaxation times. The equation for the
conventional Debye relaxation has α = 0. The fit to Eq. (10) is shown in Fig. 20 where the real and imag-
inary part of ε is plotted as a function of the dimensionless parameter ωτ . The parameter α determined
from the fit is α = 0.42

The temperature dependencies of the relaxational frequencies extracted from the Raman data, Γ (T ),
and from the microwave conductivity data, τ−1(T ), are plotted as a function of inverse temperature in
Fig. 21. On the same plot we show the Arhenius behavior of the dc conductivity. The dc conductivity
in this figure shows activated behavior and the break around T ∗ = 150 K points to the existence of
two regimes. At high temperatures the activation energy we obtained is ∆T>T∗

dc = 2078 K, consistent

with previous results [52]. A value ∆T<T∗

dc = 1345 K is obtained at low temperatures. In this figure we
observe that the relaxational frequencies have an activated behavior and that the corresponding activation
energies match those of the conductivity both above T∗ (the Raman data) and below T∗ (the microwave
transport data). This characteristic temperature at which the dc activation changes was discussed also
in the end of section 1.3.1 where we noted that it was related to the increase of the electronic Raman
continuum, to the variation of the 2M scattering width and also to the temperature dependent intensity
of the chain superstructure peaks seen by X-ray scattering.

The inset in Fig. 21 shows the dc conductivity as a function of the applied field. The arrows mark

two threshold fields. Below E
(1)
T ≈ 0.2 V/cm the conductivity obeys Ohm’s law and it has the Arhenius

temperature dependence shown in the main panel. For electric fields above E
(1)
T the I −V characteristics
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(a) (b)

Fig. 19. (a) The temperature dependence of the real (open circles) and imaginary (solid circles) of the complex
dielectric function between 85 and 300 K. The solid and dashed lines are guides for the eye. (b) Raman response
function in (cc) polarization at several temperatures. The dots are the data and solid lines are fits to a relaxational
behavior as described by Eq. (9). The excitation energy used is ωin = 1.55 eV. The excitation around 350 GHz
seen for T < 300 K is the phonon shown in Fig. 13. The inset shows the temperature dependence of the quasielastic
intensity A(T ) (data from Ref. [56]).

change from linear to approximately quadratic. At much higher fields, above 50 V/cm, there is a second
threshold which marks a very sharp rise of the current. The differential conductivity in this regime is
very high, more than 105 Ω−1cm−1, an estimate limited by contact effects and most likely carried by
inhomogeneous filamentary conduction.

Fig. 20. Scaling of the complex dielectric function ε = ε1 + iε2. Empty (solid) circles correspond to the real
(imaginary) part of ε. (Data from Ref. [56].)
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We turn now to the interpretation of the data shown in Figs. 19, 20 and 21. We remark that the energy
range of the relaxational peaks seen in Fig. 19 is much lower than the thermal energy or the magnetic
and dc activation gaps. Therefore, this is incompatible with single-particle type excitation and suggest
that the low energy charge dynamics is driven by correlated collective behavior. We identify this strongly
temperature dependent feature to be a CDW relaxational mode in the longitudinal channel, screened due
to the interaction with thermally excited quasiparticles, as described in the previous section. We note
that electronic Raman scattering can probe directly the longitudinal channel [81] because the Raman
response function, χ′′(ω), is proportional to Im[1/ε(ω)], a quantity proportional to εL from Eq. (7). We
can support in what follows this assignment by quantitative comparison with this simple two-fluid model
and by the results of the non-linear conductivity measurements as a function of electric field. Microwave
and millimeter wave spectroscopy [19] supports our assignment. In the end of this chapter, we discuss
recent (and direct) evidence for the existence of CDW correlations in Sr14Cu24O41 provided by X-ray
measurements [82].

The immediate question prompted by our claim, which essentially ascribes to a common origin our
observations in Fig. 19 and the properties of K0.3MoO3 (an established CDW material) shown in Figs. 17
and 18, is: If we observe a property related to the pinning of an existent CDW, where is the pinned
phase mode? A microwave experiment performed by Kitano et al. reported a relatively small and narrow
peak between 30 and 70 GHz in the c-axis conductivity which was observed up to moderately high
temperatures [19]. The authors attributed this resonance to a collective excitation and speculated about
a possible CDW origin. It turns out that our data along with the results of Kitano et al. as well as results
of reflectivity measurements form a basis on which these results can be analyzed quantitatively. In Fig. 22
are shown the main result in [19] and the plot of -Im[1/ε(ω)] obtained by our Kramers-Krönig analysis
of ’raw’ reflectivity data, see Ref. [10].

Fig. 21. Measured dc conductivity (right scale) and the scattering rates (left scales) obtained from fits to the
Raman data (using Eq. (9)) and the imaginary parts of the complex dielectric function (using Eq. (10)) shown in
Fig. 19. Green line: dc conductivity. Red: the dots are the scattering rates Γ (T ) from the Raman data in Fig. 19b
and the line is an Arhenius fit showing an activated behavior with ∆Raman = 2072 K. Blue: the dots are the
scattering rates τ−1(T ) from the dielectric response in Fig. 19b and the line is a similar exponential fit rendering
∆ε = 1466 K. In both regimes the scattering rates show the activated behavior of the dc conductivity. The shaded
area shows the range of scattering rates calculated as described in the text. The inset shows the nonlinearity in
the dc conductivity as a function of applied electric field measured at T = 100 K. Note that the vertical scale for
the inset coincides with the vertical scale of the main panel. (Data from Ref. [56].)



26 A. Gozar and G. Blumberg

0

0.05

0.1

0 0.5 1 1.5

0 5000 1 104

Lo
ss

 fu
nc

tio
n 

-I
m

[1
 / 

ε]
 (

ar
b.

 u
.)

eV

cm-1

Ω
p

(a) (b)

c - axis

T = 300 K

Fig. 22. (a) Low temperature microwave c (a) axis conductivity at T = 10 K for Sr14Cu24O41 crystals from three
different batches is shown by open (solid) symbols (data from Ref. [19]). The solid lines are Lorentzian fits. (b)
The c-axis loss function in Sr14Cu24O41 at 300 K. Ωp indicates a plasma edge around 3300 cm−1.

We believe that the microwave resonance in the 30 to 70 GHz range in Fig. 22a corresponds to the
average pinning frequency of the CDW in Sr14Cu24O41 . Along with a plasma edge Ωp ≈ 3300 cm−1

extracted from the loss function (see Fig. 22b) and using Eq. (5) which gives ε0 − ε∞ = Ω2
p/Ω2

0 , one
obtains for the low frequency dielectric function values of the order of 106, consistent with the experimental
observations in Fig. 19. The two-fluid model described in the previous section, see Eq. (8), predicts that
the relaxational energy is proportional to the activated dc conductivity. Indeed, the Arhenius behavior
of the relaxational energies, extracted both from Raman and transport measurements in Fig. 19, shows
from fits with e−∆/kBT activation energies similar to those of dc conductivity. Moreover, we remark that
the similarity is not only up to a proportionality factor, but the calculated theoretical values for τ−1(T )
according to Eq. (8) using the measured values of ε0 and σqp are in agreement with the experiment. This
can be seen in Fig. 21 where the calculated values (the shaded area whose thickness takes into account
the error bars in the determination of the dc value of the dielectric function ε1) match the measured τ−1

(blue dots).
The non-linear transport data shown in the inset of Fig. 22 for T = 100 K further confirm the existence

of density wave correlations in Sr14Cu24O41 . The three regimes observed are typical for systems in which

the CDW is pinned by impurities [73, 77]. Below E
(1)
T the pinned CDW does not contribute to transport

and σdc is governed by the quasiparticle response. Around this value of the field there is an onset of the
CDW conductivity due to the relatively slow sliding of the condensate. In this 2nd regime the predominant
damping mechanism is the screening of internal electric fields produced by local CDW deformations by

backflow quasi-particle currents. The 3rd regime defined by fields E > E
(2)
T , indicates a regime of free

sliding CDW, the Fröhlich superconductivity, also observed in K0.3MoO3, see Fig. 9. In this case the
velocity of the condensate is so high that it does not feel the background quasi-particle damping.

The overall consistency among the measured temperature dependencies of the dielectric function,
dc conductivity and relaxational energies demonstrates the applicability of the hydrodynamic model
description for the low energy carrier dynamics in a CDW ground state. However, there are several issues
which have to be mentioned. One difference with respect to what happens in well established CDW
systems is that the observed relaxational peak in Raman response is at higher energies than the pinned
mode at Ω0. This may be because there is a broad distribution of pinning frequencies and the origin
of the Raman relaxational peak is in the high energy side of this distribution. Up to date there are no
measurements of the pinned phase mode at or above 300 K. Another issue is that although the absolute
values of τ−1(T ) calculated according to Eq. (8) are in agreement with the experiment, the same is not
true for the Raman relaxation frequencies Γ (T ). The calculated values are about 50 times smaller than
the measured ones. A reduction in the density wave amplitude, as suggested by the decrease in the peak
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intensity, inset of Fig. 19b, would produce a concomitant increase in Γ . Further enhancement in the
scattering rate may come from additional relaxational channels due to low lying states which are seen
at temperatures higher than about 150 K by magnetic resonance [15], c-axis conductivity (Fig. 10) or
Raman scattering (Fig. 11).

The existence of density wave correlations in Sr14Cu24O41 at temperatures of the order of 650 K gives
this compound a distinctive property compared to classical CDW systems. These high temperatures sug-
gest that in this case it is not the phonons which support the CDW but rather the strong magnetic
exchange J ≈ 1300 K may play an important role in the charge and spin dynamics. One aspect men-
tioned in the previous section was that hole pairing in 2LL’s is a robust feature due to the AF exchange
correlations. In this respect, an interesting question is: What is the fundamental current carrying object?
Is it due to single or paired electrons? Helpful in this regard would be to try to measure current oscil-
lations and interference effects (For a description see Chapter 11 in Ref. [73]). In fact this is probably
the only prominent ’classical’ transport signature of a CDW state which has not been checked yet in
Sr14Cu24O41 and it would be an interesting project.

Soft X-ray scattering from Sr14Cu24O41

The most direct way to measure CDW ordering is by neutron or X-ray scattering because they can
measure directly super-lattice peaks associated with the distortions of the lattice or electronic clouds. In
conventional CDW materials this is the case and the electron-phonon interaction causes atomic displace-
ments and local electronic density modulations of the order of the atomic numbers. However, up to date,
conventional hard X-ray experiments (using photons with typical energies of the order of tens of keV)
failed to detect carrier ordering in the ladder structure of Sr14−xCaxCu24O41 compounds.

Is there any way to observe weak charge modulations which do not involve detectable distortions in
the structural lattice? One way to enhance the scattering amplitude from the doped holes is by exploiting
those changes in the optical properties of the materials which occur as a result of doping. This often
involves, as is the case for cuprates, using incident photons with energies about two orders of magnitude
smaller than in conventional X-ray experiments. A real space charge modulation will lead to a proportional
change in the Fourier transformed density which in turn is proportional to the dielectric susceptibility of
the material, χ(k, ω). The X-ray scattering amplitude is determined by the electronic density and as a
result will scale proportionally to χ(k, ω).

It turns out that in 2D cuprates [83] and Sr14−xCaxCu24O41 ladders [11] there are features seen in the
X-ray absorption spectra (XAS) which arise directly as a result of hole doping. The situation is simpler in
2D cuprates and it can be illustrated for La2CuO4+δ: For the insulating compounds the oxygen K-edge
around 540 eV (which marks the beginning of a continuum of excitations consisting of electron removals
from O1s orbitals), has also a prepeak at 538 eV which, due to hybridization, corresponds to intersite
O1s → Cu3d transitions. If holes enter O2p orbitals, there will be another prepeak appearing at 535 eV
due to the fact that additional O valence states are available to be filled by the excited O1s electron.
The spectral weight of this carrier induced feature is stolen from the 538 eV prepeak. It is clear that
the opening of a new absorption channel at 535 eV will change the optical properties at this energy,
in particular of the susceptibility χ(k, ω). This also means that X-ray scattering amplitude for 535 eV
incident photons will be enhanced with respect to the non-resonant case by factor proportional to the
’susceptibility contrast’ which can be defined as the percentage change of the susceptibility in the doped
versus undoped case [83]. Note that this enhancement applies only to the signal from the doped carriers.

In (Sr,La)14−xCaxCu24O41 the XAS spectra have the same general characteristics but the situation
is more complicated because the mobile carrier absorption feature is split into chain and ladder features
[11]. However these excitations can be resolved and they are shown in Fig. 23b. This figure shows the
characteristic energies of the oxygen K-edge. The carrier prepeaks are resolved by using different polar-
izations of the incoming photon fields and one can see that the ladder absorption at 528.6 eV occurs at
about 0.5 eV higher energy than the corresponding feature in the chains, consistent with the XAS study
in Ref. [11]. A 2D scan in reciprocal space for incident photon energies of 528.6 eV is shown in Fig. 23a.
In this figure the momentum transfer Q = (2π/a H, 2π/b K, 2π/cL LL) is in ladder reciprocal units along
the c-axis. The vertical line is due to specular reflection from the surface and the displacement from
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Fig. 23. (a) The superlattice peak seen at 528.6 eV OK ladder carrier prepeak in the reciprocal space in
Sr14Cu24O41 . LL on the vertical axis refers is in ladder units. The rod at H = 0.01 is due to the specular reflection
from the sample surface. (b) Black symbols represent X-ray absorption spectra taken with photon polarizations
E ‖ c (filled circles) and E ‖ a (empty circles). The carrier prepeaks corresponding to the chains/ladders are
indicated by arrows. Red symbols are for the integrated intensity of the superlattice reflection seen in panel (a)
as a function incident photon frequency. Data from Ref. [82].

H = 0 is due to crystal miscut, the normal to the surface making a finite angle with respect to the c-axis.
A superlattice reflection at (0, 0, 0.2) indicates a a charge modulation of 5 ladder units. In terms of the
large crystal structure this momentum transfer corresponds to L = (c/cL) LL = 1.4, where c and cL are
the lattice constants corresponding to the big unit cell and ladder unit cell satisfying c = 7cL = 27.3 Å
[1]. This Bragg reflection is a true superlattice peak since it does not have the periodicity of the 27.3 Å
unit cell and it should not be confused with the five-fold modulation in the chain structures [16].

The (0, 0, 0.2) reflection has an unusual excitation profile. The resonance is shown in Fig. 23b where
the energy dependence is plotted along with the absorption spectra. One can notice that this reflection
is seen only in resonance with the ladder absorption at 528.6 eV, being absent for all other energies,
including the oxygen K-edge. This proves two main aspects: The Bragg peak arises solely from the doped
ladder holes, and it cannot be due to any structural modulation which would track all the features in
the OK absorption. The superlattice peak width in k space gives the correlation lengths ξc = 255 Å and
ξa = 274 Å indicating that the order is two dimensional. This observation is very interesting given the
fact that magnetic properties due to the different exchange parameters (Cu-O-Cu bonds making 90◦ or
180◦ degrees along the a and c axes respectively, see Fig. 1) as well as the dc transport remain anisotropic,
highlighting the importance of inter-ladder Coulomb interactions.

This X-ray scattering study confirms the transport data shown in the previous section in establish-
ing the existence of charge density modulations in doped 2LL’s. The findings are consistent with the
predictions of a crystalline order of ladder holes as a competing state to superconductivity [5, 69]. The
absence of structural distortions argues that it is not the conventional electron-phonon interactions, but
many-body electronic effects which drive the transition. One question to address is whether the CDW
correlations exist in Ca substituted Sr14Cu24O41 crystals. This is the topic of the next section where,
based on the similarities with the Raman data in Sr14Cu24O41 we argue that fluctuations of the density
wave order persist at high Ca concentrations and high temperatures.
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4.4 Signatures of Collective Density Wave Excitations in Doped Sr14−xCaxCu24O41 . Low
Energy Raman Data.

In Fig. 24a we show low frequency Raman response in x = 12 Sr14−xCaxCu24O41 at several temperatures.
The (cc) polarized spectra above 300 K are dominated by a quasi-elastic peak, very similar to the one in
Sr14Cu24O41 , see Fig. 19. The solid lines are fits using the same Eq. (9) as in Fig. 19. A small contribution
of the background, as shown in the inset, was subtracted. The polarization and doping dependence of
this relaxational feature are shown in Fig. 24b-e. We note that the quasi-elastic feature is present only
in (cc) polarization and we find it in Sr14−xCaxCu24O41 for all Ca concentrations studied (x = 0, 8 and
12). This low energy excitation is absent however in La6Ca8Cu24O41 which contains no holes per formula
unit, confirming the fact that it is due to the presence of doped carriers. We confirmed also that there
is no influence of magnetic fields either on this feature or on the modes seen in panels (a) and (c) at
12 and 15 cm−1 respectively. This supports the assignment of these modes, shown also in Fig. 13 for
Sr14Cu24O41 , to a phonon.

Interestingly, it turns out that the extracted temperature dependent relaxational energy Γ (T ) for
x = 12 Sr14−xCaxCu24O41 reveals, similarly to Sr14Cu24O41 in Fig. 21, an activated behavior of the form
Γ (T ) ∝ exp(−∆/kBT ). Moreover, the activation energies are found to be about the same: ∆ ≈ 2100 and
2070 K in Sr14Cu24O41 and x = 12 Sr14−xCaxCu24O41 , respectively, see Fig. 25c. While this energy is
close to the activation energy of the dc conductivity in Sr14Cu24O41 , in x = 12 Sr14−xCaxCu24O41 the
temperature dependence of the conductivity is far from exponential, and this can be seen comparing panels
(a) and (b) of Fig. 25. In fact, the behavior shown in panel (b) is very similar to the one in underdoped
2D cuprates: there is a low temperature insulating and a high temperature metallic behavior, in this
latter regime the resistivity growing linearly with temperature [6, 84].

In the previous paragraphs we argued that the quasi-elastic Raman scattering in Sr14Cu24O41 is a
signature of collective CDW dynamics. The main argument in this respect was the Arhenius behavior of
the scattering rate with the activation given by the dc transport. The low energy scale and the strong
similarity between the Raman results in x = 0 compared to x = 8 and 12 Sr14−xCaxCu24O41 allow us to
claim that collective density wave excitations are also present at all Ca substitutional levels. Confirmation
of this scenario comes also from more recent transport and optical conductivity data of Vuletić et al. [85]
who observe the persistence of the microwave relaxational mode in x = 3 and 9 Sr14−xCaxCu24O41 . The
authors of this work argue however that Ca substitution suppresses the CDW phase and long range order
does not exist above x = 10. In this respect we argue that the feature observed in the Raman data in
Fig. 24 at quite high temperatures in x = 12 Sr14−xCaxCu24O41 is due to local fluctuations of the CDW
order.

How can one reconcile the observation of the same activation energy for Γ (T ) with the fact that in
the insulating regime σdc in x = 12 Sr14−xCaxCu24O41 is not activated and, moreover, it turns metallic
at high temperatures, a behavior clearly not consistent with the prediction of Eq. (8)? One possible
explanation suggested by the c-axis optical conductivity data is the following: in Sr14Cu24O41 one can
observe a relatively broad mid-IR peak with an onset around 140 meV, see Fig. 10 and Refs. [10, 51]. In
Sr14−xCaxCu24O41 this peak continues to be present [10] and remains a distinct feature although there is
a large spectral weight transfer to low energies. We propose that the common mid-IR feature is responsible
for the similarly activated behavior of the relaxation parameter Γ (T ) and observe that the energy scale
of this peak (which is also seen in high Tc cuprates) is set by the ladder AF exchange energy of about
135 meV. In this perspective, a speculative explanation for non-Fermi-liquid like metallic dc conductivity
at high Ca substitution levels could be based on a collective density wave contribution. Ca substitution
introduces disorder that could lead to a much broader distribution of pinning frequencies which may
extend to very low energies, towards the dc limit, rendering a Fröhlich type component contributing to
σdc. Intuitively one can imagine that the current carrying objects are not quasi-particles but (because of
a small CDW correlation length) ’patches’ of holes organized in a density wave order.

Another more conventional scenario for the metallic behavior in x = 12 Sr14−xCaxCu24O41 could be
based on an anisotropic and partially gapped Fermi surface in the context of higher dimensionality of the
electronic system. The soft X-ray study described before, see Fig. 23, shows that the CDW correlations
are two dimensional in Sr14Cu24O41 and recent low frequency dielectric response measurements [86] were
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Fig. 24. A summary of the quasi-elastic Raman scattering in Sr14−xCaxCu24O41 and La6Ca8Cu24O41 compounds.
(a) Temperature dependence of the Raman response in x = 12 Sr14−xCaxCu24O41 in (cc) polarization taken
with ωin = 1.55 eV. This plot is the analogue of Fig. 19b. The inset shows a typical fit of the Raman
data with a relaxational form, Eq. (9), and a small contribution from an underlying background. Panels (b),
(c), (d) and (e) show polarized low energy Raman response for Sr14Cu24O41 , La6Ca8Cu24O41 and x = 8
and 12 Sr14−xCaxCu24O41 respectively. Note that the quasi-elastic Raman peak is absent in the undoped
La6Ca8Cu24O41 crystal and it is present, only for the polarization parallel to the ladder legs, in all studied
Sr14−xCaxCu24O41 samples.

able to track down the relaxational peak in a configuration with the electric field parallel not only to the
ladder legs but also to the rung direction. One should keep in mind however that the transport along the
rung and leg directions is different, as is proven by the ratio of the a to c-axis conductivities, ρa/ρc ≈ 10,
for a large range of Ca dopings. This can also be related to the fact that we do not observe in Fig. 25a
the screened longitudinal CDW relaxational mode in (aa) polarization although the hole ordering is two
dimensional. Additional support for this conjecture comes from an angle resolved photoemission study
[87] which shows that while for Sr14Cu24O41 the gap is finite, for Sr5Ca9Cu24O41 the density of states rises
almost to the chemical potential and also from the fact that it is known that the low energy optical spectral
weight transfer is enhanced with further increase in Ca substitution [10]. In this picture, the insulating
behavior in x = 12 Sr14−xCaxCu24O41 below 70 K can be understood in terms of carrier condensation
in the density wave state which leads to a completely gapped Fermi surface. In order to explain the
similar relaxation rates Γ (T ) for Sr14Cu24O41 and x = 12 Sr14−xCaxCu24O41 one has to invoke however
a strongly momentum dependent scattering rate and coupling of the condensate to normal carriers.

Irrespective of the exact microscopic model, the low energy properties of Sr14−xCaxCu24O41 crystals
bring challenging and unresolved aspects. Moreover, the proof for existence of CDW correlations along
with strong similarities between local structural units and transport properties in Cu-O based ladders and
underdoped high-Tc materials suggest that carrier dynamics in 2D Cu-O sheets at low hole concentration
could be also governed by a collective density wave response.

5 Summary

In this chapter we focussed on magnetic and electronic properties of two-leg ladder materials. We ob-
served at high frequencies (3000 cm−1) in the Sr14Cu24O41 compound a two-magnon (2M) resonance
characteristic of an undoped ladder which we analyze in terms of symmetry, relaxation and resonance
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Fig. 25. Panels (a) and (b) show the temperature dependent dc conductivity for x = 0 and 12 Sr14−xCaxCu24O41 .
Panel (c) shows Arhenius temperature dependence of the relaxational rate Γ (T ) for x = 0 (filled circles) and x = 12
(empty squares). The variation of the quasi-elastic peak intensity, A(T ), with temperature (solid lines are guides
for the eye) is shown in panel (d).

properties. Our findings regarding the spectral properties of this excitation were contrasted to 2M Raman
measurements in other magnetic crystals and existing theoretical calculations, emphasizing the sharpness
of the 2M peak in the context of increased quantum fluctuations in one-dimension. This comparison made
us suggest that the spin-spin correlations in an undoped two leg ladder may have a modulated component
besides the exponential decay characteristic of a spin liquid ground state. We found that the 2M peak
resonates with the Mott gap determined by O2p → Cu3d transitions, following the behavior of the opti-
cal conductivity in the 2-3 eV region. Interplane Sr substitution for Ca in Sr14Cu24O41 introduces strong
disorder leading to inhomogeneous broadening of the 2M resonance in the undoped system. The doped
holes in the spin liquid ground state further dilute the magnetic correlations, suppressing considerably
the spectral weight of this excitation.

Sr14−xCaxCu24O41 crystals at high Ca concentrations are superconducting under pressure and hole
pairing was proposed to be a robust feature of doped ladders. The measured dielectric response in the
microwave region, the low energy Raman data, the non-linear transport properties along with soft X-
ray scattering allowed us to conclude that the ground state in Sr14−xCaxCu24O41 for a wide range of
Ca concentrations (x ≤ 12) is characterized by charge density wave correlations. This state seems to
be driven not by phonons but by Coulomb forces and many-body effects. We highlighted the similarity
in the finite frequency Raman response as opposed to the very different behavior of the dc resistivity
between undoped and doped ladders. We found that at high Ca concentrations, although the resistivity
shows a crossover between insulating and linear in temperature metallic regime, the carrier relaxation is
characterized by the same large activation energy (≈ 2000 K) which determines the Arhenius behavior of
the CDW compound Sr14Cu24O41 . This observation prompted us to suggest an unconventional metallic
transport driven by collective electronic response.
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