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We simulate the optical fields and optical transmission through nanoarrays of silica rings embedded in thin
gold films using the finite-difference-time-domain method. By examining the optical transmission spectra for
varying ring geometries we uncover large enhancements in the transmission at wavelengths much longer than
the usual cutoffs for cylindrical apertures or where the usual planar surface plasmons or other periodic effects
from the array could play a role. We attribute these enhancements to closely coupled cylindrical surface
plasmons on the inner and outer surfaces of the rings, and this coupling is more efficient as the inner and outer
ring radii approach each other. We confirm this hypothesis by comparing the transmission peaks of the
simulation with cylindrical surface plasmon �CSP� dispersion curves calculated for the geometries of interest.
One important result is that a transmission peak appears in the simulations close to the frequency where the
longitudinal wave number kz in the ring satisfies kz=m� /L, where m is an integer and L the length of the
aperture, for a normal CSP TE1 or TM1 mode. The behavior of the CSP dispersion is such that propagating
modes can be sent through the rings for ever longer wavelengths as the ring radii approach, whereas the
transmission decreases only in proportion to the ring area.
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I. INTRODUCTION

The phenomenon of enhanced optical transmission �EOT�
through nanoarrays of apertures has attracted a great deal of
attention ever since the publication of Ebbesen et al.’s work
in 1998.1 This work, while having far-reaching implications
for optical device development �as well as for devices in the
RF and microwave regime�, has generated a lot of contro-
versy concerning the origin of the enhanced transmission.
While originally thought to be attributable to surface plas-
mons �SP’s�1–3 on the upper and lower surfaces of the metal
film in which the apertures were embedded, other investiga-
tors have shown that other effects including shape
resonances4,5 and resonant coupling between the elements of
the array,2,6,7 present even for perfect conductors where SP’s
are not present,6,7 and other diffractive effects from evanes-
cent waves,8 can account for EOT. The explicit role of SP’s
has not been completely resolved since the other enhance-
ments often occur at frequencies very close to those where
surface plasmons would be launched.

Apart from the role of SP’s, EOT is very sensitive to the
shape of apertures. For example, the aspect ratio of rectan-
gular apertures can have a large influence on EOT.4 In a
series of papers8–12 considering arrays of coaxial ring �CR�
apertures, Baida and co-workers have shown in finite-
difference-time-domain �FDTD� simulations that the EOT
from coaxial ring apertures can be much larger than from
cylindrical apertures. Furthermore, the transmission peaks
for coaxial gold rings are considerably redshifted from those
of either perfectly conducting coaxial rings or cylindrical
holes. Such coaxial structures have recently been fabricated
by Salvi et al.,13 who find good agreement between their
measured transmission intensities and FDTD simulations, at
least for wavelengths up to the maximum measured of
900 nm. These findings demonstrate that one can exceed the
diffraction limit to a much greater degree when these CR
structures are used compared to apertures with a cylindrical

shape or other open structures. This could have far-reaching
consequences for optical devices in sensing, detection, and
communication applications. The main purpose of this paper
is to analyze the underlying physics of the coaxial geometry
and to show that cylindrical surface plasmon �CSP� reso-
nances are primarily responsible for this behavior. We have
previously sketched the role of these resonances for such CR
structures.14 The present paper gives a detailed analysis of
their optical properties.

The previous investigators attribute the enhancements at
long wavelengths to the mode structure of the individual
coaxial rings �CR�,10,12,13 presumably a TE1 mode, and not to
the periodic structure. How the behavior of these modes is
determined by the properties of the gold film �and gold core
of the rings� has not been delineated. Some of the normal
modes for a CR in a perfect conductor do differ considerably
from those of a cylindrical aperture.12,15 For example, the
lowest frequency TE1 mode has a cutoff ���R1+R2�,12,15

where R1 and R2 are the inner and outer ring radii. This gives
the somewhat nonintuitive property that, for a constant outer
radius R2, the cutoff approaches a constant value 2�R2 as the
ring closes �R1→R2�, which is the maximum value of the
cutoff wavelength for a fixed R2. �Of course, the transmis-
sion vanishes in this limit as the ring closes up.� Also, the CR
supports a TEM0 mode without cutoff. This mode, however,
has radial symmetry and cannot be readily excited by an
incoming plane wave of linear or circular polarization, and
thus would not be seen in a FDTD simulation or typical
experiments. In this work we show that the cutoff wave-
length increases indefinitely in the above limit, and this is a
consequence of the negative dielectric constant of metals and
the ensuing cylindrical surface plasmons.

The above work on CR structures9–12 motivated us to
carry out FDTD simulations to guide possible device fabri-
cation processing. These simulations strongly suggest that
the source of the unusual EOT for the coaxial ring apertures
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are cylindrical surface plasmon �CSP� resonances, with the
propagating CSP’s on each of the metal-dielectric interfaces
becoming strongly coupled as the ring narrows. In the re-
mainder of this paper we present the evidence for such an
interpretation. Section II briefly describes our model system
and the basics of our FDTD simulation, including the param-
eters of an extended Drude model for the dielectric constant
of gold �Au�. Section III examines the analytic features of
the normal mode problem, as a function of the inner and
outer ring ratio, for a coaxial cylinder with a metal core and
a dielectric ring embedded in a metal film. By diagonalizing
the appropriate 8�8 matrix we derive dispersion curves for
CSP normal modes and from these derive the resonant con-
ditions, which allow us to predict the peak positions as a
function of ring geometry. We show that the cutoff for propa-
gating modes increases indefinitely as the ring narrows with
a resultant redshifting of the transmission peaks. We assess
the role of losses in limiting this behavior. In Sec. IV we
carry out FDTD simulations for different CR geometries.
These simulations confirm the analytic trends established in
Sec. III. While the transmission peaks increasingly redshift
with narrower rings, the intensity of transmission decreases
no faster than the exposed ring area, and the transmitted
energy is two to four times that incident on the ring. In Sec.
V we summarize our results and present conclusions.

II. MODEL SYSTEM

Our “basic” model consists of an infinite array of coaxial
silica �index of refraction=1.46� rings spaced in a square
pattern at d=555 nm intervals, with inner and outer radii
R1=50 nm and R2=100 nm, imbedded in an L=290 nm
thick Au film. The metal film is itself imbedded in a uniform
silica medium. The incident light is a linearly polarized plane
wave traveling in the silica medium incident normally on the
Au film �from the bottom�. Figure 1 illustrates our model
system. We consider variations of the CR geometry, namely
changes in R1, L, and d, as well as considering our basic
geometry with Au replaced by a perfect conductor �PC�.

We simulate the fields with the NRL High Accuracy Scat-
tering and Propagation �HASP� code.16,17 This code employs a
nonstandard finite difference �NSFD� algorithm that yields
much smaller amplitude and dispersion errors than the stan-

dard Yee algorithm when used on a coarse �� /10� grid.18,19

We employ periodic boundary conditions in the x and y di-
rections �parallel to the film� and Mur absorbing boundary
conditions in z. The spatial step is 6.9375 nm in all direc-
tions, and the typical time step is 0.02 fs. The incident pulse
is a plane wave of period 3.0 fs ��=900 nm in vacuum,
623 nm in silica� with a Gaussian envelope with a full width
half maximum �FWHM� of 0.809 fs. The frequency depen-
dence of the fields at any point is calculated from the time
dependence obtained from the simulation using standard fast
Fourier transform �FFT� techniques. We compute the trans-
mission intensity at a given frequency by comparing the real
part of the z component of the Poynting vector integrated
over a plane 700 nm above the film with the corresponding
quantity in the incident beam. �This intensity is stable as the
height above the film is varied from 300–1000 nm�.

We have verified the HASP code a number of different
ways. Simulations of Mie scattering from cylinders20 and
spheres21 reproduce the analytic results to about 2% even on
a coarse �� /10� grid. �Here we are using about a � /100
grid�. The HASP code also gives good agreement with the
near-surface fields in the surface plasmon jet observations of
Egorov et al.17 HASP also reproduces the positions of the
transmission peaks observed by Martin-Moreno et al.2 for a
free standing silver film with cylindrical apertures �although
the magnitude of the peaks differs from the experiment�.

We model the dielectric constant of Au with an extended
Drude model, i.e.,

�m��� = �1 − i�2/���1 − i��� + 4�i��/� , �1�

where �1, �2, ��, and � are fit to the experimental dielectric
constant. This form is a generalization from the Drude model
that allows us to fit the dielectric constant over a much larger
range of wavelengths than the pure Drude model. Thus we
are not required to carry out numerous simulations over lim-
ited ranges of wavelengths to cover the full range of interest.
Values of �1=7.919, ��=0.0056 fs−1 �we use Gaussian
units�, �2=−14 395.1016 and �=9.00 fs yield a good fit to
the experimental data of Johnson and Christy22 for �
=600–2000 nm. Figure 2 illustrates this fit for �	450 nm.
The real part fits the experimental data well for �	520 nm,
while the imaginary part fits well for �	630 nm. We include
more recent experimental data of Lynch and Hunter23 up to
10 000 nm, and our fit agrees reasonably well at least up to

FIG. 1. Schematic diagram of problem geometry for the “basic”
case. A square array of coaxial cylinders with gold cores and silica
rings are embedded in a gold layer itself embedded in a silica me-
dium. The ring geometry, film thickness, and periodicity are indi-
cated. Light is incident normally at the bottom of the film.

FIG. 2. The dielectric constant of gold as calculated from Eq.
�1� and the experimental measurements of Johnson and Christy
�Ref. 22� and Lynch and Hunter �Ref. 23�.
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this wavelength. The dc conductivity � in our model is
127 fs−1, whereas the observed dc conductivity for Au is
about 440 fs−1 �Ref. 24�. Thus our fit must eventually lose its
accuracy in the long wavelength limit, but this must be well
beyond 10 
m. We adapt the algorithm developed by Gray
and Kupka25 �originally for a pure Drude model� to handle
this frequency dependence for the Au regions, whereas we
use the NSFD algorithm of the HASP code to update the fields
in the uniform �silica� medium.

III. CYLINDRICAL SURFACE PLASMON DISPERSION

Before considering an analytic treatment of the CR prob-
lem, we illustrate in Fig. 3 the simulated transmission spec-
trum for our basic case and for variations in the inner radius
R1. A significant feature is that the prominent peak at the
longest wavelength is progressively redshifting as the ring
narrows �R1→R2=100 nm�. Actually it appears that a pair of
peaks is redshifting. �This pair corresponds to the peaks at
770 and 1000 nm for R1=50 nm, but corresponds to the two
longest wavelength peaks for larger R1.� For our model for
the dielectric constant �Eq. �1�� the planar surface plasmon
�PSP� �i.e., the surface plasmon propagating on the flat upper
and lower surfaces of the film� resonances should be at
843 nm for a �0,1� mode, and at 631 nm for a �1,1� mode.
�These are the vacuum wavelengths.� All of these simula-
tions produce a peak at 880 to 960 nm, which corresponds to
the usual PSP resonance, which is typically redshifted some-
what from the theoretical position.3,26 These peaks shift a
little with R1, but not dramatically as do the aforementioned
peaks. The long wavelength pairs of peaks appear unrelated
to the planar surface plasmons, and their dependence on R1
implies they are related to the modes of the coaxial rings
themselves.

Our simulation results closely resemble those of Baida et
al.9–12 as does the conclusion that some of the peaks are not
due to planar surface plasmons. Allowing for the slightly
different periodicity �theirs is 600 nm� and dielectric medium
�they use glass, �=2.34� the peak positions and features of
our Fig. 3 for R1=0 are very similar to those of Fig. 4 of Ref.
10, and the features in Fig. 3 for R1=50 nm are very similar
to those of Fig. 8 of Ref. 10. For example, for R1=50 nm and

R2=100 nm �see Fig. 8, Ref. 10�, both our results and those
of Baida et al.10 exhibit a pair of peaks �at 1000 nm and
903 nm in Fig. 3� at long wavelengths separated by
�100 nm, followed by a triad of peaks at wavelengths
100–200 nm shorter �at 654, 714, and 763 nm in Fig. 3�, and
a rather small “bump” at a somewhat shorter wavelength �
598 nm in Fig. 3, at about 680 nm in Fig. 8, Ref. 10�. An
even smaller bump �40 nm blueshifted from the latter that
is hard to discern in either figure. The relative magnitudes of
these features in our simulations and in Ref. 10 are compa-
rable in magnitude. In addition to the aforementioned SP
modes, corresponding Wood’s anomalies �WA�, in our case
theoretically at 810 and 572 nm, could play a role in ac-
counting for some of these simulated features. The higher
order features at the shorter wavelengths ��700 nm� in our
simulations and those in Ref. 10 do not show up as clearly as
in some other simulations, such as those of Chang et al.27

who consider 200 nm open square apertures. Here the de-
creased exposed area of our coaxial ring apertures �com-
pared, e.g., to open circular or square apertures� may par-
tially explain the repression of these features. Indeed, these
higher order features are further repressed in the R1=75 nm
and R1=85 nm results in Fig. 3. There are some peaks, how-
ever, e.g., the peaks at 1000 nm and 763 nm in Fig. 3 �with
corresponding peaks at 1150 and 900 nm in Fig. 8 of Ref.
10� that cannot be explained by PSP or WA effects.

We have also simulated the system studied by Salvi et
al.13 We obtain peaks at 660 nm and 1300 nm versus their
results of 700 and 1320 nm. The difference is likely due to
the different treatment of the dielectric constant of Au. �They
use different pure Drude model fits over limited wavelength
intervals.�

How do the modes of the individual coaxial rings account
for the behavior of the transmission spectra shown in Fig. 3?
To investigate this question we first carry out a normal mode
analysis of the geometry of interest �Fig. 1� in cylindrical
coordinates to obtain CSP dispersion curves for a single �in-
finitely long� CR completely surrounded by Au. We seek the
relation between the longitudinal wave number kz in the CR,
the azimuthal state n, and the frequency �, denoted by �n�kz�
or the corresponding wavelength �n�kz�. We follow the pro-
cedure described by Schröter and Dereux,28 who derive the
CSP dispersion curves for a metal ring embedded in a dielec-
tric. Kushawa et al.29,30 have developed Green’s function
techniques for calculating dispersion curves for coaxial29 and
multiaxial30 structures with arbitrary dielectric constants with
applications to quantum wire and nanotubelike structures.

We straightforwardly adapt the methods of Ref. 27, ex-
cept now with a dielectric ring embedded in a metal. We
concentrate on n=1 as this is the azimuthal mode most
readily excited by a linearly polarized plane wave. A normal
mode exists whenever the appropriate boundary conditions
on E�, Ez, H�, and Hz at the two cylindrical metal-dielectric
interfaces can be satisfied, which amounts to finding the ze-
roes of the determinant of an 8�8 matrix involving TE and
TM coefficients for the various cylindrical Bessel �or Neu-
mann or Hankel� functions in the radial wave function for
the three radial regions. �For n=0 or kz=0 pure TE or TM
modes can be found; otherwise, the CSP modes are TE-TM
combinations�. We will show that these modes have a surface

FIG. 3. The transmission spectra for various inner radii �R1�. All
other parameters are the same as the basic model.
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plasmonlike character, i.e., the fields are concentrated near
the metal-dielectric cylindrical interfaces.

In general, all the components of E and H can be ex-
pressed in terms of the TM and TE wave functions, TM and
TE, and their first and second derivatives with respect to the
cylindrical coordinates �, �, and z, where, in a radial region
i for azimuthal mode n,

TM = �
m

AimFn
m�ki��exp�ikzz�exp�in�� , �2a�

TE = �
m

BimFn
m�ki��exp�ikzz�exp�in�� , �2b�

where Fn
m�z� is a cylindrical Bessel-type function whose type

�Bessel, Neumann, or Hankel� is labeled by m, and ki is the
radial wave number that satisfies

ki
2 + kz

2 = 
i�i�
2/c2, �3�

where �i is the dielectric constant in region i, and 
i is the
magnetic permeability �usually one�. �The longitudinal wave
number kz and the azimuthal mode n are common to all
radial regions.� In the inner metallic region m=1 and F is a
Bessel function Fn

1�z�=Jn�z�. In the dielectric ring m=1 or 2
with Fn

m�z� a Bessel function Jn�z� for m=1, or a Neumann
function Nn�z� for m=2. In the outer metallic region m=1,
and F is a Hankel function of the first kind Hn

�1��z�. The eight
coefficients Aim, Bim are gotten from matching the continuity
of E�, Ez, H�, and Hz at the metal-dielectric interfaces at
inner radius R1 and outer radius R2. This involves finding the
zeroes of the determinant of the matrix M,

M =

J1 − J2 − N2 0 0 0 0 0

i�1�J1�/k1c i�2�J2�/k2c − i�2�N2�/k2c 0 − nkzJ1/k1
2R1 nkzJ2/k2

2R1 nkzN2/k1
2R1 0

0 − J3 − N3 H4 0 0 0 0

0 − i�2�J3�/k2c − i�2�N3�/k2c i�3�H4�/k3c 0 nkzJ3/k2
2R2 nkzN3/k2

2R2 − nkzH4/k2
2R2

0 0 0 0 J1 − J2 − N2 0

− nkzJ1/k1
2R1 nkzJ2/k2

2R1 nkzN2/k1
2R1 0 − i�J1�/k1c i�J2�/k2c − i�N2�/k2c 0

0 0 0 0 0 − J3 − N3 − H4

0 nkzJ3/k2
2R2 nkzN3/k2

2R2 − nkzH4/k2
2R2 0 i�J3�/k2c i�N3�/k2c − i�H4�/k3c ,

�4�

where J1=Jn�k1R1�, J2=Jn�k2R1�, J3=Jn�k2R2�, with similar
labeling for the Nj, and H4=Hn

�1��k3R2�. In our case, where
the core of the coaxial rings and the film are both Au, �1
=�3=�Au���, �2=�silica=2.13, and k1=k3. �We have assumed
that 
1=
2=
3=1.� The continuity conditions are summa-
rized in the matrix equation Ma=0, where a is the coeffi-
cient vector whose components are
�A11,A21,A22,A31,B11,B21,B22,B31� of Eq. �2�, and the eight
components of the vector Ma, when equated to zero, give the
continuity conditions on Ez�R1�, H��R1�, Ez�R2�, H��R2�,
Hz�R1�, E��R1�, Hz�R2�, and E��R2�, respectively. If the
metal is perfectly conducting, then pure TE and TM solu-
tions are possible. In the case of a perfectly conducting metal
with R1	0, a cylindrically symmetric TEM0 mode is also
possible, and this mode has no cutoff. For a real metal ��
finite� pure TE or TM solutions are coupled unless n=0 or
kz=0 �Eq. �4��, and except for these cases the solutions are
admixtures of TE and TM. The TEM0 mode is still possible,
but the cylindrical symmetry of this mode means that it can-
not be excited by an incident linearly �or circularly� polar-
ized plane wave. The evidence to date12,13 indicates that the
long wavelength modes are predominantly TE1, which is
most easily excited by incident plane waves.

Figure 4 gives the n=1 dispersion curves for Au, ex-
pressed in terms of the wavelength �1�kz� for six values of
the inner radius R1 �R2=100 nm�. To simplify matters we

have used only the real part of the dielectric constant of Au.
Including the imaginary part hardly alters these curves for
the real part of �1�kz�, but of course a finite width will be
introduced �usually widening to 10–30 nm in ��. The verti-
cal lines correspond to values of kz that satisfy the relation
kzL=� values for various L. As the condition

kzL = m� �5�

is the general condition for a longitudinal standing wave in
the cylinder, the intersection of any of these lines �the verti-
cal axis� with a given curve will give the wavelength for m
=1 �m=0� at which the cylindrical mode is in resonance with
the longitudinal mode. �Eq. �5� is the usual longitudinal reso-
nance condition for a cavity with perfectly conducting walls;
we assume it is approximately true for the real metal, which
our later simulations bear out.� Physically, we tentatively
identify these as CSP resonances, as our following analysis
will confirm that these solutions have the characteristics of
surface plasmons propagating on the metal-dielectric inter-
faces because of the negative dielectric constant of the metal.
Thus a picture of CSP assisted extraordinary transmission
takes form. As previously noted,12,13 the EOT is primarily
driven by TE1 wave guide modes �kz�0�, which differs from
the EOT produced by planar surface plasmons, where the
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latter involves evanescent modes propagating through the ap-
erture.

We find a very close correspondence between the resonant
frequencies in the simulations �Fig. 3� with those obtained
with the dispersion curves with the resonance condition of
Eq. �5� �see Fig. 4�. For example, for n=1 with our basic
model �R1=50 nm, L=290 nm� the dispersion analysis pre-
dicts m=0, 1 peaks at 979 nm and 789 nm, respectively,
while the simulation gives these peaks at 1000 nm and
757 nm. For R1=75 nm the dispersion analysis gives
1376 nm and 1035 nm, while the simulations in Fig. 3 give
1406 nm and 1110 nm. The simulation results closely follow
the trends of the dispersion analysis, but tend to be redshifted
somewhat from the analytical results. Differences can come
from several sources including losses, presence of other
modes, interference of CSP and PSP modes, and the “stair-
case” representation of the CR on a finite rectangular mesh,
as well as the condition of Eq. �5� being approximate.

Figures 5�a� and 5�b� show the radial dependence of the
dominant field components for a typical solution correspond-
ing to kz=.0108 nm−1 for inner radius equal to 50 nm and
85 nm, respectively. The magnitude of the fields is maximum
at the inner metal-dielectric interface with cusplike curvature
at both interfaces like that of decaying exponentials away
from the interfaces on either side. �For some components the
field is actually decreasing or nearly constant as it ap-
proaches the outer radius, but with positive curvature.� This
is the expected behavior of a cylindrical surface plasmon,

i.e., surface states on the inner and outer radius of the ring.
As the ring narrows �see the 85 nm case in Fig. 5� the fields
do not have a chance to substantially fall off away from the
inner radius, and the average field intensity in the dielectric
ring is higher than for a wider ring. In a sense the CSP wave
functions from the two interfaces are overlapping more. An-
other possible physical picture is that the surface plasmons
from the two surfaces are more coherent, i.e., that while the
surface plasmons have the same angular momentum �the
same azimuthal quantum number n� they also approach hav-
ing the same angular velocity as R1→R2.

From the dispersion curves in Fig. 4 it is evident that the
wavelengths at the peaks for m=0 and m=1 increase rapidly
as R1→R2. What is the limit for such behavior, i.e., does the
peak redshift indefinitely? To determine this dependence on
the width of the ring we consider the condition for det�M�
=0 in the limit �R=R2−R1→0. For n=1 and kz=0 the TE
and TM modes decouple and the TE modes are determined
by a 4�4 matrix

M =

J1�kmR1� − J1�kdR1� − N1�kdR1� 0

−
i�J1��kmR1�

kmc

i�J1��kdR1�
kdc

i�N1��kdR1�
kdc

0

0 − J1�kdR2� − N1�kdR2� H1
�1��kmR2�

0
i�J1��kdR2�

kdc

i�N1��kdR2�
kdc

−
i�H1

�1���kmR2�
kmc

.

�6�

The determinant of M is straightforward to evaluate. Since, for �	600 nm ��m � � ��d�, thus km�kd, we express the determi-
nant in powers of km /kd,

FIG. 4. The n=1 CSP dispersion curves for silica CR’s embed-
ded in a gold film for the basic case but with various R1 values. The
solid vertical line indicates the values of kz corresponding to kz

=� /L for L=290 nm, while the dotted vertical lines indicate corre-
sponding values of kz for L=420 and 1000 nm.

FIG. 5. Radial dependence of the fields and electromagnetic
energy density �arbitrary units� for n=1, kz=0.0108 nm−1 and R1

=50, 85 nm, obtained from the CR normal mode analysis.
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det�M� = −
�2

km
2 c2	

km
2

kd
2 J1�kmR1�H1�kmR2��N1��kdR1�J1��kdR2� − J1��kdR1�N1��kdR2��

+
km

kd

 J1�kmR1�H1��kmR2��J1��kdR1�N1�kdR2� − N1��kdR1�J1�kdR2��

+ J1��kmR1�H1�kmR2��J1�kdR1�N1��kdR2� − N1�kdR1�J1��kdR2��
�

+ J1��kmR1�H1��kmR2��N1�kdR1�J1�kdR2� − J1�kdR1�N1�kdR2��
� , �7�

where H1�z� is shorthand for H1
�1��z�. We assume that kd�R2−R1�=kd�R�1, and expand the Bessel functions whose arguments

are kdR2 in terms of those evaluated at kdR1 and their derivatives. The first square bracket in Eq. �7� is of first order and reduces
to

�N1��kdR1�J1��kdR1� − J1��kdR1�N1��kdR1��kd�R ,

which can be further reduced, by application of the Bessel function differential equation

w��z� = − w��z�/z − �1 − 1/z2�w�z� , �8�

to

�1 − 1/kd
2R1

2��N1��kdR1�J1�kdR1� − J1��kdR1�N1�kdR1��kd�R .

The first order contribution to the first square bracket in the km /kd term in of Eq. �7� vanishes leaving only a zero order
contribution. The second square bracket in the km /kd term becomes, upon expansion to first order

J1�kdR1�N1��kdR1� − N1�kdR1�J1��kdR1� + kd�R�J1�kdR1�N1��kdR1� − N1�kdR1�J1��kdR1�� ,

which reduces to, upon application of the Bessel function differential equation

J1�kdR1�N1��kdR1� − N1�kdR1�J1��kdR1� − �R/R1�J1�kdR1�N1��kdR1� − N1�kdR1�J1��kdR1�� .

The last square bracket in Eq. �7� vanishes in zero order and only the first order contribution

�N1�kdR1�J1��kdR1� − J1�kdR1�N1��kdR1��kd�R

remains. Upon application of all of these relations, a common factor

W�kdR1� = N1�kdR1�J1��kdR1� − J1�kdR1�N1��kdR1� �9�

appears in Eq. �7�. Equation �7� now becomes

det�M� =
�2W�kdR1�

km
2 c2 	

km
2

kd
2 J1�kmR1�H1�kmR2� 1

kd
2R1

2 − 1�kd�R

−
km

kd
�J1�kmR1�H1��kmR2� − J1��kmR1�H1�kmR2��1 − �R/R1��

+ J1��kmR1�H1��kmR2�kd�R
� . �10�

Further simplification occurs because of the identity W�z�=
−2/�z. Further assuming that km�R�1 �to be justified lat-
ter�, Eq. �10� becomes, ignoring the prefactor since we are
only interested in the zero of the determinant,

det�M� �
km

2

kd
2 J1�kmR1�H1�kmR1� 1

kd
2R1

2 − 1�kd�R

−
km

kd
�J1�kmR1�H1��kmR1� − J1��kmR1�H1�kmR1��1

− �R/R1�� + J1��kmR1�H1��kmR1�kd�R

+
km

kd
�J1��kmR1�H1��kmR1�

− J1�kmR1�H1��kmR1��km�R . �11�

We further utilize the identity J1�kmR1�N1��kmR1�
−N1�kmR1�J1��kmR1�=2/�kmR1 to obtain

J1�kmR1�H1��kmR1� − J1��kmR1�H1�kmR1� = 2i/�kmR1

�12�

and the differential equation for H1�z� to eliminate H1��kmR1�
and simplify Eq. �11� further �to first order in �R�,
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det�M� �
km

2

kd
2 J1�kmR1�H1�kmR1� 1

kd
2R1

2 − 1�kd�R −
2i

�kdR1

−
km

kd
J1��kmR1�H1�kmR1��R/R1

+ J1��kmR1�H1��kmR1�kd�R

+
km

2

kd
J1��kmR1�H1��kmR1� − J1�kmR1�H1�kmR1�

� 1

km
2 R1

2 − 1���R +
km�R

kdR1
J1�kmR1�H1��kmR1� .

�13�

There are two regimes where our approximations are valid.
The first is, for most metals, the optical and near infrared.
For these frequencies ��1 in the extended Drude model
�Eq. �1��, but kd�R�1, and in this case �m��2 /�2�2 and
km= ��2�1/2 /c�. For wavelengths 600–4000 nm km is ap-
proximately the constant value 0.04i for Au. The second re-
gime is the extreme �→0 limit �which corresponds to the
extreme �R→0 limit� where �m� i /�. With � and �R as
small parameters, in either of the above cases the leading
terms proportional to �R0 and �R1are the third and first
terms of Eq. �13�, respectively. Keeping these leading terms
and equating the determinant to zero yields the following
condition for a CSP resonance:

kd
2 = − 1/2 i�km

2 J1�kmR1�H1�kmR1��R/R1, �14�

or

�res = c�− 1/2 i�km
2 J1�kmR1�H1�kmR1��R/R1�1/2/ � �d,

�15�

where km may depend on �. In the regime where �m is real
and negative, km= i�m, where �m is real and positive, �res is
real and positive and can be expressed

�res = c��m
2 I1��mR1�K1��mR1��R/R1�1/2/ � �d, �16�

where I1�z� and K1�z� are modified Bessel function of the
first and second kind.31

If �m is �approximately� constant, the resonant frequency
is real, positive, and is decreasing to zero as ��R1/2. This
behavior of the resonant wavelength, ��R−1/2, is roughly
consistent with the extraction of resonant frequencies from
the dispersion curves �Fig. 4� and simulation results �Fig. 3�
in the optical and near infrared regimes. Equation �16� fur-
ther simplifies if y=�mR1 is very large or very small. �In the
problem of interest y�4�. In the large and small �mR1 limits

�res � c��m�R/R1
2�1/2/ � �d, �17a�

and

�res � c�m�1/2�R/R1�1/2/ � �d, �17b�

respectively. The fact that the resonant frequency is real and
decreases as �R1/2, or that the resonant wavelength increases
as �R−1/2, as �R→0, follows from �m being real in Eqs.
�17a� and �17b�, and is a consequence of the negative dielec-

tric constant of the metal. This would not occur for the infi-
nite imaginary dielectric constant of an ideal conductor.

As the ring further narrows, the resonant frequency de-
creases and eventually we are in the regime where the metal
behaves as a good conductor and its dielectric constant be-
comes pure imaginary, �m=4�i� /�, where in our extended
Drude model �Eq. �1�� �=��−�2 /4��. In the limit kmR1
�1, J1�kmR1�H1�kmR1��−i /�, and we obtain

�res � − 2i���R/�dR1, �18�

i.e., the resonant frequency decreases as the ring width, but
becomes entirely imaginary. �The frequency in our formula-
tion has a negative imaginary part because we have assumed
that the fields have a time dependence �exp�−i�t�, thus a
negative imaginary part corresponds to a finite lifetime.� For
Au the losses become significant for �	4 
m, whereas the
condition kmR1�1 holds for ��30 
m. Therefore, as one
proceeds from the optical to the THz regime the resonant
wavelength increases indefinitely �inversely� as �R, but pro-
ceeds off of the real axis, i.e., develops a larger width.

Figure 6 illustrates the dependence of the resonant fre-
quency for kz=0 on �R using the full extended Drude model
of Eq. �1�, including the imaginary part �i.e., losses�. We also
include results for the approximation of Eq. �15�, which are
very close to the exact results for �R�10 nm. The behavior
�res��R1/2 is confirmed for .01 nm��R�10 nm, which
roughly corresponds to .01 fs−1���3.0 fs−1 or wave-
lengths 0.6 to 180 
m. For narrower CR’s �i.e., lower fre-
quencies� the resonant frequency becomes imaginary and lin-
ear in �R. The dominance of the imaginary part formally
means that the width becomes large compared to the real part
of the resonant frequency, which means that a resonance
does not really exist. The crossover point is �R�0.01 nm or
��0.01 fs−1 ���180 
m� for the extended Drude model
we employ. The dc conductivity � employed in our model is
about a factor of 3.5 too small. Thus our extended Drude
model underestimates losses in the low frequency limit.
However, the losses are slightly overestimated with respect
to experiment at ��10 
m �see Fig. 2�. Realistically, the

FIG. 6. The real and imaginary parts of the m=0 �kz=0� reso-
nant frequency for the full dielectric constant of Eq. �1�. The ap-
proximate values of Eq. �15� are indicated.
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results in Fig. 6 should be accurate at least down to �
�0.1 fs−1 with the downturn for both curves becoming more
severe at lower frequencies. Figure 7 shows the correspond-
ing curves for the case kz=0.021 666 nm−1, which is the m
=1 longitudinal resonance condition for L=290 nm. Here
also the �res��R1/2 behavior occurs over the same range of
�R �and �� as in Fig. 6.

IV. FDTD SIMULATION OF COAXIAL RING APERTURES

The above CSP normal mode analysis largely explains the
unusual dependence of the decreasing resonant frequency �or
increasing resonant wavelength� with the narrowing of the
coaxial rings, as well as predicts this dependence for rings
much narrower than can be explored with numerical simula-
tion. Numerical simulation, however, is necessary to supple-
ment these predictions for several reasons: �i� The CSP dis-
persion analysis does not tell us how efficiently the CSP
normal modes couple with the incident radiation, i.e., the
intensity of these resonances. �ii� The resonant condition
kzL=m� is approximate. �iii� All resonant modes �SP, CSP,
n�1 interfere naturally in a FDTD simulation, and should
give more reliable predictions of transmission peaks, etc. �iv�
The simulations include the full effect of the dielectric con-
stants, including losses. In this section we confirm the theo-
retical predictions of the previous section and further assess
the properties of the coaxial ring arrays through FDTD simu-
lations.

The previous theoretical analysis assumes that the CSP
enhancements are the result of the CSP normal modes of
individual CR apertures. This would seem justified because
the fields drop precipitously between apertures in the gold
film �see Fig. 5�, i.e., a tight-binding picture seems to apply.
However, periodicity effects do exist between cylindrical ap-
ertures even for perfectly conducting �PC� films. To see how
these peaks are affected by the periodicity of the lattice, in
Fig. 8 we compare the transmission spectrum of 555 nm pe-
riodicity with that of 888 nm periodicity. The longest wave-
length PSP for 888 nm periodicity should be at about
1350 nm. A peak does show up at 1333 nm, but it is hardly
discernible in Fig. 8. �There is a larger peak at 1243 nm, but

this is hardly discernible also.� The largest peak appears at
1004 nm, very close to the 1000 nm peak for 555 nm peri-
odicity. �The intensity is down by a factor of 3, but this
mainly reflects the reduction of the aperture density by a
factor 2.56�. Thus the position of this peak is hardly affected
by periodicity. Baida et al.10–12 obtain the same result as long
as the periodicity is greater than 300 nm �in silver�. This
strongly implies that the long wavelength enhancements de-
pend only on the physics of the individual CR and the CSP
modes uncoupled from the other CR’s.

Figure 8 also includes the spectrum for the Au film re-
placed by a perfectly conducting film with CR apertures of
the same geometry. A peak appears at 808 nm �554 nm in the
silica�, well beyond the cutoff of 687 nm for the TE1 mode.
This peak is likely the result of the resonant coupling be-
tween the rings,6 which occurs at a wavelength �in the me-
dium� close to the lattice spacing, and occurs even for PC
films. Our analysis does not preclude such effects also in the
real metal, but the long wavelength enhancements and the
singular behavior of the resonant wavelength as R1 ap-
proaches R2 are not related to such effects and explicitly

FIG. 7. The real and imaginary parts of the
m=1 �kz=0.021 66 nm−1� resonant frequency for
the full dielectric constant of Eq. �1�.

FIG. 8. The transmission spectra for the periodicities d
=555 nm and d=888 nm for gold films, and for d=555 nm for a
perfectly conducting �PC� film. All other parameters are the same as
our basic model.
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depends on the negative dielectric constant of the real metal.
To test our predictions on the dependence of the transmis-

sion peaks on R1 and L, we illustrate in Fig. 9 the transmis-
sion spectra for two different L values for R1=50 nm and
R1=75 nm. The theoretical resonance positions, with the
condition kzL=m� assumed, are also indicated. The theory
and simulations are in good agreement with respect to the
movement and spacing of the peaks with R1 and L. The
peaks in the simulation usually are slightly redshifted �by an
average �30 nm� from the theoretical positions, a feature
that is also common for peaks associated with planar surface
plasmon resonances.3,26 The peak positions at the longest
wavelengths hardly change with L because they correspond
to m=0 and in this case kz=0 independent of L. However,
the second peaks �the third peak for R1=50 nm, L=290 nm,
since the second peak here is the PSP peak�, corresponding
to m=1, do significantly redshift for larger L. This is consis-
tent with the dispersion curves of Fig. 4 since here kz=� /L,
and the resonant wavelength is a monotonically decreasing
function of kz �Fig. 4�. Additionally, the PSP peak at 903 nm
for our basic case hardly changes when L increases from 290
to 1000 nm, thus distinguishing PSP behavior from that of
CSP’s. The intensity, however, is significantly depressed for
L=1000 nm, which is mainly the result of losses. Moreover,
the results in Fig. 9 closely confirm the theoretical predic-
tions of Sec. III.

We can also extract spatial fields and Poynting vectors
�energy flow� from the simulations to examine the character
of the solutions. The radial behavior of the fields in the CR
we extract closely resemble those in Fig. 5. Figure 10 illus-
trates the real and imaginary parts of the Poynting vector �S�
for our basic case at the PSP peak �903 nm� and at the CSP
peak �1000 nm�. The signature of a CSP resonance is a large
imaginary part of the Poynting vector along the surfaces of
the CR throughout the CR. This is observed in Fig. 10�b� at
the CSP peak even in the middle of the CR, but not in Fig.
10�a� for the PSP peak, although there is a large Im�S� at the
top and bottom surfaces. Im�S� is strongest at the inner
metal-dielectric interface, although this is hard to see in the
figure. Also, as a by-product, the real part of S is appreciable
in the CR and decays only very slowly �due to losses� in both
cases. The behavior of S is indicative of guided modes rather

than evanescent modes in the CR, even at nonresonant fre-
quencies. Thus the modes in the coaxial apertures influence
the propagation through the CR even off-resonance and can
lead to overall enhancements even for the PSP modes, by
dramatically increasing the TE1 mode cutoff.

One of our most important results is that the resonant
wavelength seems to be ever increasing as the CR is nar-
rowed, behaving as ��R2−R1�−1/2 at least in the optical and
the near infrared. Of course in the R1=R2 limit the transmis-
sion vanishes because the aperture vanishes, i.e., the exposed
dielectric area vanishes. For a cylindrical aperture the trans-
mission decays faster than the exposed area because the
waves in the aperture are evanescent. For the CR apertures
the modes are propagating, thus we would expect the trans-
mission to fall off roughly as the exposed area. Table I gives
scaled values of the m=0 and m=1 peak wavelengths scaled
to �R2−R1�−1/2�i . e . �sc=�peak / �R2−R1�−1/2�, and the trans-
mission at the peak scaled to the exposed area �Tsc

=Transmission�FDTD��Area�FDTD cell� /Area�CR�� for
L=290 nm. Results for R1�85 nm are for FDTD simula-

FIG. 9. The transmission spectra for various R1, L combinations.
The solid arrows indicate the theoretical positions of the m=0 �kz

=0� resonances, and the dotted arrows the positions of the m=1
�kz=� /L� resonances.

FIG. 10. Diagram of the real �black arrows� and imaginary �gray
arrows� parts of the Poynting vector in the CR for �a� �=903 nm
�the PSP peak� and �b� �=1000 nm �the CSP peak�. �The real and
imaginary parts have a different scaling in the plots.� The grid cor-
responds to the coordinates, in nm, in the simulation.
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tions, while for R1	85 nm the results are from the disper-
sion analysis �Fig. 4�. The �R2−R1�−1/2 scaling of the peak
wavelength, as discussed in Sec. III, holds rather well. The
transmission intensities at these peaks are typically 2–4 times
that incident on the exposed area. As is often described to be
the case with PSP enhancements, there seems to be a mecha-
nism drawing radiant flux into the apertures when CSP reso-
nant modes are present. We are presently looking into the
origin of this phenomenon.

V. SUMMARY AND CONCLUSIONS

We have investigated the optical transmission spectra of
silica coaxial ring arrays in gold films as functions of the
periodicity, ring geometry, and film thickness from analytic
considerations and by FDTD simulations. Long wavelength
transmission peaks occur in FDTD simulations well beyond
the aperture cutoffs and beyond wavelengths where diffrac-
tive effects or planar surface plasmons play a role. Normal
mode analysis indicates that transmission peaks occur when
cylindrical surface plasmon n=1 modes �TE1 or predomi-
nantly TE1� are supported and standing waves exist along the
length of the CR. The cutoffs for these modes, unlike those
of cylindrical apertures or CR’s in a perfectly conducting
film, indefinitely increase as the ring radii approach each
other, behaving as ��R2−R1�−1/2. These properties result
from the negative dielectric constant of a real metal and
would not ensue for a metal viewed as an ideal conductor.
The singular behavior of the cutoff wavelength holds as long
as the influence of the imaginary part of the dielectric con-
stant is small compared to the real part. For Au this corre-
sponds to ��20 
m. Past this wavelength the resonant
wavelength continues to increase, but becomes wider and
wider until the resonance peak gets completely washed out.
In the long wavelength limit the magnitude of the resonant
wavelength increases as �R2−R1�−1, but becomes completely
imaginary, as expected of a perfect conductor.

The enhancements from cylindrical surface plasmons, un-
like those from planar surface plasmons, involve propagating

modes through the CR. The peak transmission intensities de-
crease no faster than the exposed CR area, enabling a super
extraordinary transmission at very long wavelengths. The
transmission intensities at the peaks, in fact, are typically
2–4 times the incident flux on the exposed portion of the CR.

We propose the following possible physical argument for
the CSP enhancements and their dependence on ring geom-
etry. CSP’s are “launched” analogously to PSP’s. PSP’s are
launched when the photon can exchange planar momentum
to the SP equal to a characteristic momentum of the two-
dimensional �2D� lattice. Under periodic boundary condi-
tions this sets up standing wave PSP’s. The analogy to the
periodic boundary condition azimuthally is the requirement
of single-valuedness, and this is characterized by the � de-
pendence �exp�±in��, which can be interpreted as the CSP
exchanging n units of angular momentum with the cylinder.
If a CSP also propagates in the z direction, standing wave
boundary conditions normally require kzL=m�, where kz is
the characteristic unit of momentum which is associated with
the length of the aperture and exchanged with the CSP. To-
gether n and kz describe the CSP motion on a cylindrical
surface as ksp describes the motion of a PSP on a flat surface.
When �n ,kz� has a characteristic value of the cylinder �inte-
gral n, kzL=m�� a CSP is launched. When the ring is narrow,
the inner and outer CSP’s not only have the same angular
momentum, but they have nearly the same angular velocity,
meaning that the two CSP’s have more coherence. A comple-
mentary view is that the wave functions of the two CSP’s
overlap increasingly as the ring narrows, as seen in Fig. 5.

The structures we study are difficult to fabricate in the
optical range because of the high aspect ratios involved, and
also because silver and gold, which are the metals that give
the best SP response �i.e., low losses�, are very inert. They
are difficult to process in such dimensions. Electron and ion
beam lithography, liftoff, dry etch, electroplating, and ion
beam milling are potential techniques that could be used to
fabricate such structures. Recently there has been significant
progress in fabricating these coaxial structures. As previ-
ously mentioned, Salvi et al.13 employed electron-beam li-
thography and gold liftoff to form 330 nm diameter coaxial
aperture arrays in 140 nm gold films on glass. However, they
did not measure the structures in the near infrared range
where we would have expected the CSP peak. Very recently
Orbons et al.,32 using ion-beam lithography, fabricated simi-
lar arrays on 70–190 nm thick silver films on a glass sub-
strate and measured the transmission up to 1700 nm, which
includes the region where the m=0 CSP peak should occur.
�We are presently analyzing these results.� To date both of
these experiments13,32 have been limited to rather low aspect
ratios for the apertures.

While the present study was restricted to the optical and
IR regimes, beyond which losses would dominate, one could
exploit the features in other regimes �THz, RF� by the devel-
opment of metamaterials33 with negative �effective� dielec-
tric constants and low losses containing such CR structures.
The properties we found should have a dramatic effect on
device design and hopefully motivate experiments to fabri-
cate �i.e., through ion beam milling, dry etch, electroplating,
or related techniques� and explore these structures, as a start
in this direction has already occurred.13,32

TABLE I. The m=0 and m=1 CSP transmission peak wave-
lengths, determined from the dispersion curves �Fig. 4�, scaled to
�R2−R1�−1/2 �i.e., �sc=�peak / �R2−R1�−1/2� and the transmitted in-
tensity scaled to the exposed CR area �Tsc=Transmission�FDTD�
�Area�FDTD cell� /Exposed Area�CR�� for various R1 values.
Results for R1�85 nm are for FDTD simulations, while for R1

	85 nm the results are from the dispersion analysis �Fig. 4�.

m=0 m=1

R1 �nm� L �nm� �sc �nm�1/2 Tsc �sc �nm�1/2 Tsc

0 290 6820 2.16 5790 0.99

50 290 7071 4.01 5353 2.14

75 290 7030 2.95 5550 4.70

85 290 6801 2.12 5170 4.02

90 290 6596 4718

99 290 6481 4423

99.9 290 8985 5202
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