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Blumberg et al. Reply: The recent scanning SQUID [1],
tunneling [2], ARPES [3,4], penetration depth [5–7], and
specific heat [8] experiments provided convincing evi-
dence of dx2�y2-wave pairing symmetry for the electron-
doped cuprates at low and optimal doping. In agreement
with these experiments, the recent electronic Raman
scattering studies [9] rule out an anisotropic s-wave sce-
nario: In contrast to conventional s-wave superconductors
no gap-threshold structure has been observed in elec-
tronic Raman response for any symmetry channel even
at the lowest temperatures and frequencies measured. On
the other hand, the pair breaking excitations measured
by polarized electronic Raman scattering indicate a
larger magnitude of the superconducting (SC) gap closer
to the middle of the Brillouin zone (BZ) quarters, the
vicinity of ���=2a;��=2a� points, than to the BZ
boundaries [9,10]. The latter results are inconsistent
with the monotonic dx2�y2 SC order parameter (OP)
function, ��k� / cos�kxa� � cos�kya�, where k is a wave
vector on the Fermi surface (FS) and a is the ab-plane
lattice constant.

Our proposal of a nonmonotonic dx2�y2 OP for which
the positions of the SC gap maxima are located closer to
the nodes than to the BZ boundaries [9] reconciles all
experimental observations [11]. Indeed, the maximum
Raman gap, 2�B2g

� 67 cm�1, is consistent with the
gap value of �tunn

max � 3:7 meV observed in tunneling spec-
troscopy [12], and the 2�B1g

� 50 cm�1 is consistent with
the leading edge gap at the BZ boundary estimated from
ARPES experiments [3,4]. For hole doped cuprates,
superconductors with short correlation length, the nearest
neighbor correlation is strongest and monotonic OP is
expected. In contrast, for electron-doped cuprates the
superconducting correlation length is longer leading to a
nonmonotonic OP.

In the preceding Comment, Venturini et al. [13] note
that for a nonmonotonic OP a multiple peak/shoulder
structure is expected in the Raman response. Their cal-
culation [Fig. 1(a)], however, does not account for real-
istic FS topology, energy and momentum dependent
relaxational behavior, possible impurity scattering rates
and inhomogeneous broadening, and is sensitive to the
gap functional form. Unrealistically small constant phe-
nomenological damping � � 1:3 cm�1 has been used,
while, for example, the best fit for the Bi2Sr2CaCu2O8

compound required � � 43 cm�1 [14], much larger than
the separation in fine structure of density of states for our
proposed nonmonotonic OP, �B2g

� �B1g
� 8:5 cm�1.

For larger �, the sharp singularities are not expected to
be resolved and indeed a flattop structure for spectra in
the B1g channel is experimentally observed (Fig. 3 in [9]).
Calculations with larger phenomenological damping
[Fig. 1(b) in [13] ] well resemble experimental data at
high frequencies; however, the use of momentum and
energy independent damping for in-gap energies is not
justified even for strongly anisotropic superconductors
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[15,16]: The imposed large values of �=! are unphysical
and wipe out characteristic low-frequency power laws.

The low-frequency power laws in Raman response in-
deed provide independent verification for existence and
position of the SC gap nodes. The experimentally ob-
served power laws, approximately cubic for B1g and linear
for B2g channels (Fig. 3 in [9]), are in agreement with the
expectations for dx2�y2-wave superconductors [13,14,17].

We note that for a nonmonotonic OP the phase space of
the nodal regions is reduced relative to the monotonic OP.
As a result, a stronger activated-like contribution in ther-
modynamic properties is expected. Measurements down
to sub-Kelvin temperatures are required to emphasize the
nodal behavior: The power laws are dominant only below
a crossover temperature that depends on the nodal veloc-
ity. The disagreements of thermodynamic and penetration
depth measurements at relatively high temperatures with
fits to monotonic d-wave OP are therefore not surprising.
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