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Screening of the Raman response in multiband superconductors: Application to iron pnictides
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We performed model calculations of Raman responses for multiband two-dimensional superconductors. The
multiband effects of screening in the A|, symmetry channel were investigated analytically and numerically for
a band-structure model mimicking angle-resolved photoemission spectroscopy data on iron-pnictide materials.
An acceptable agreement between our model calculations and recent experimental data is demonstrated by

modification of the band-structure parameters.
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I. INTRODUCTION

A large variety of compounds belonging to the iron-based
superconductors have been found since the discovery of su-
perconductivity in LaFeAsO,_,F, in the beginning of 2008.!
They can be classified into four different families, divided by
stoichiometric differences, exhibiting superconducting (SC)
behavior induced by hole doping, electron doping, as well as
solely the application of high pressure (for a review, see Ref.
2). All compounds are layered materials with a common
layer of an iron-pnictide in between different spacing layers
or simply layers of FeSe. So the location of the SC inducing
physics is the tetragonal Fe-containing layer leading to
highly two-dimensional (2D) electronic structure.> Angle-
resolved photoemission spectroscopy (ARPES) finds several
bands crossing the Fermi surface*® (FS) which is unique
since, with the exception of MgB,, superconductors have
been most often treated as single band materials. The mecha-
nism that leads to superconductivity including the pairing
symmetry of the SC order parameter is still under debate (a
theoretical review is provided by Ref. 7). Gap symmetries
both with nodes (p wave or d wave) and without nodes (s
wave) are still under consideration.’

Electronic Raman scattering (for a review, see Ref. 8)
could clarify some of those unresolved issues. In the light
scattering experiment different parts of the Brillouin zone
(BZ) can be emphasized with different weights through the
selection of incident and outgoing light polarizations with
respect to the crystallographic directions. Thus, by manipu-
lating the directions of the polarization vectors of the inci-
dent and scattered photons in a Raman experiment, it is pos-
sible to determine the symmetry of the pair-breaking
excitations related to the symmetry of the SC order
parameter.® Furthermore, the low-energy tail of the Raman
responses can be used to distinguish between a fully gaped
FS or a SC gap with nodes allowing the excitation of quasi-
particles at arbitrarily small energies.

The theory of electronic Raman spectroscopy in
superconductors’ has been very successful in applications to
high-T, cuprates®!? and now allows us to make predictions
for the Raman responses of the iron pnictides. Recently
model calculations of expected Raman responses for a super-
conductor with multiband order parameter and including the
long-range Coulomb interactions responsible for the multi-
band screening effects have been performed by Boyd ef al.'!
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These calculations used multiple circular FS sheets as a band
structure and for the majority of the work the Raman vertices
are obtained by an expansion into FS harmonics for cylindri-
cal FS. Taking the screening of the charged background into
account but leaving out vertex corrections capturing effects
of final state interactions a variety of different gap distribu-
tions on the FS sheets with and without nodes were used.
Thus, many different forms were obtained for the Raman
responses which show the possible scenarios expected from
the data. By comparing the singularities in different symme-
try channels of such calculated Raman responses with the
peak structure of actual Raman data, the reconstruction of the
momentum and frequency dependences of the superconduct-
ing order parameter, critical to the understanding of the su-
perconducting mechanism in these materials, is possible. In
another study'>!3 it has been established by analyses of the
vertex corrections that for an A, extended s-wave gap sym-
metry, the A;, Raman response has a true collective mode
resonance peak below the fundamental gap 2A,. Since the
collective mode is predicted only for this particular pairing
symmetry, conscientious  polarization-resolved  low-
frequency Raman scattering study of the iron-pnictide mate-
rials may provide a way to unambiguously distinguish be-
tween various suggested gap symmetries.

Very recently the first electronic Raman scattering experi-
ments on Ba(Fe;_,Co,),As,, a member of the 122 family,
have been performed'* showing a change in the Raman re-
sponse in the SC state only in the A, and B,, channels. A
clear peak of logarithmic-singularity shape in the latter one
and a broader peak in the former one at a slightly higher
energy are observed and the low-energy shape is interpreted
as evidence for accidental gap nodes.

In this paper model calculations of Raman responses for a
multiband free-electron model are performed. In Sec. II the
general theory of Raman scattering in the SC state is pre-
sented and explicit forms of the Raman vertices and an ana-
lytical expression for the Raman susceptibility are calculated
for a 2D tetragonal symmetry and a constant SC gap. Then
the screening correction is taken into account adding an extra
term in the A;, channel. Multiband effects in this symmetry
channel for two and more than two bands with an example of
a four band response are presented in Sec. III. The general
effects found in Sec. III are used in Sec. IV to explain the
Raman responses for a band-structure model inspired by
ARPES data. First a constant gap and then a k-dependent gap
of extended s-wave symmetry is used for which the single
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band structure is investigated with an only angular-
dependent model gap. Finally, the Raman response with the
extended s-wave gap is compared to experimental data and it
is shown that the band-structure model can be modified to
come to acceptable agreement. It is important to note that
final state interactions leading to vertex corrections are ne-
glected in this work. The consequences of including vertex
corrections that could give rise to resonance modes or nota-
bly modify the Raman response are discussed in Refs. 12 and
15. However, this work focuses on multiband screening ef-
fects and features of vertex corrections are left for future
publications.

The fact that in the applied assumptions analytical calcu-
lations are possible allows us to find the origin of the ob-
tained general multiband effects in the screened A, channel.
With that the shape of the numerically calculated Raman
responses for the particular band structure with extended
s-wave symmetry can be explained and further applications
to other multiband SC might follow. Furthermore the nature
of the main features of the single band Raman responses
with the extended s-wave gap is identified analytically with a
simplified model gap. Thus, our work adds further details to
the previous study by Boyd et al.!!

II. THEORY OF ELECTRONIC RAMAN SCATTERING
IN THE SUPERCONDUCTING STATE

The Raman process is inelastic scattering of light in
which the energy shift w=w;—wg between the incident pho-
ton (w;, Kk;) and the scattered photon (wg, Kg) is measured.
In the case of electronic Raman scattering this two-photon
process creates charge-density fluctuations in the sample and
through a virtual interband transition (in the nonresonant
case) an electron is excited from a state below the Fermi
energy (Ep) to a state above. In a clean system the energy
difference between those two states corresponds to the en-
ergy loss of the photon. It can be shown that the cross section
of the scattered light is proportional to the imaginary part of
the Raman susceptibility'® which is defined in linear-
response theory in the following way:

i e PHo
XRaman(q’t)z ZTI‘ T[ﬁq(t)sﬁ—q(o)] . (1)

Here q=k;—Kkg, B=kzT (kg is the Boltzmann constant), Z is
the partition function, and H is the Hamiltonian of the un-
perturbated system. The perturbation Hamiltonian H' is pro-
portional to the effective density operator'”

ﬁq = E yn(k)cjl,kcn,k’ (2)
nk

which contains fermionic annihilation (c,)) and creation
(Ci,k) operators in the nth band. Furthermore py is propor-
tional to the so-called Raman vertex v, (k) which depends on
the polarization direction of the incident and scattered pho-
tons and thus on the experimental setup (light polarizers).
This quantity will be specified and discussed in detail in the
next paragraph. With the wavelength of the incident and scat-
tered photons being in or near the visible spectrum the cor-

PHYSICAL REVIEW B 82, 014525 (2010)

responding wave vectors and therefore also their difference q
is much smaller than mz;ﬁ (2A is the SC gap and vy 4 is the
component of the Fermi‘qvelocity along q). This makes the
q—0 limit a reasonable simplification that leads to the ex-

plicit form of the Raman susceptibility in the SC state,

Mmmeam=§§ﬁmmw@» 3)

The quantity \,(k, ) is the Tsuneto function'®

A (awx !
)\n(k’w) = Ei(k) tanh ZkBT 2En(k) +ho+ia

1
* 2En(k)—hw—ia>’ “

with the SC gap A,(k), the SC quasiparticle energy E,(k)
= Vezn(k)+Ai(k), and a small broadening factor «. This func-
tion represents the creation of quasiparticles out of the SC
condensate. The first term is proportional to a SC coherence
factor and is unity at the Fermi momentum. The further away
from Ep the quasiparticles are created the smaller this factor
gets, so the major contribution to the Raman response origi-
nates from the vicinity of the Er. The second term is a sta-
tistical factor that takes into account already thermally ex-
cited quasiparticles. Since the following calculations are
made under the assumption that 7=0 this factor is simply
unity. The third term takes care of the necessary energy con-
servation and excludes a creation of quasiparticles inside the
SC gap.

Now the Raman vertex will be specified by an analytical
expression. In the nonresonant case, where the electronic ex-
citation does not include a real intermediate state, the Raman
vertex can be calculated with an effective-mass
approximation'® in the following form:

. Pe(k)
S k; o k;

n
nk)=52 e e, (5)
L]

with m denoting the electrons mass and eg; and e;; being
the light polarization vectors of the scattered and incident
photons, respectively. In this approximation the Raman ver-
tex is proportional to the second derivative (curvature) of
the band energy dispersion in the particular k direction se-
lected by the two light polarization vectors which is propor-
tional to the inverse effective mass of the band in k- p theory.
Taking into account that a periodic crystal transforming ac-
cording to a special point symmetry group is investigated
group theoretical arguments can be used to further simplify
the expression in Eq. (5). Any operator of the form M,
=M ;f}’ﬁefef (i=initial, f=final) can be decomposed according
to the point symmetry group of the crystal which will be
taken to be Dy, in this case. This leads to the decomposition
of My; into projected operators O, corresponding to the irre-
ducible representation v of the point group,®
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1 |
M= EOA]g(e}‘eié +ejed) + EOBIg(e),‘efé —ejey)

1 X ) X l X ) X
+ EOBZg(e,efq +ejeg) + EOAzg(e,e—§ -eje), (6)

which results, together with Eq. (5), in the Raman vertices
for the four symmetry channels,

B ﬂ( & €,(Kk) &Zen(k))
B on2\ ok, ok, ok, dk,)’

~ ﬂ( Fe, (k) . &zen(k))
TBo = 012\ ok, ok, ok, dk,)”

B ﬂ( #e,(K) &zen(k)) o
Tdoe= on2\ ok, ok, ~ ok, ok,

The different symmetry channels can be investigated by
choosing certain combinations of the light polarization vec-
tors through the setup of light polarizers in the experiment.
Using an effective-mass approximation [Eq. (5)] to obtain
the Raman vertices of Eq. (7) is a different approach from
the one by Boyd et al.!' where an expansion into FS harmon-
ics is done leading to angular-dependent vertices. In this
work a 2D free-electron model for the band structure will be
used which results in a constant vertex for the A, channel
since the second derivative of the energy band dispersion is
proportional to the constant inverse effective mass 1/m™ of
the band. For a parabolic band all other symmetry channels
are vanishing which is a consequence of the effective-mass
approximation in combination with a free-electron model.
This leads to the focus of the following investigations being
on the fully symmetric A, channel. A tight-binding model,
which is the next possible step, will not lead to vanishing
vertices for the nonfully symmetric channels (except A,,, the
symmetry of the antisymmetric tensor,'® which is usually
negligible).

Using a 2D free-electron model for the energy dispersion
of the nth band, which is determined by the effective mass
m, and the chemical potential u,, the Raman susceptibility
Xyyn can be calculated analytically. First the Tsuneto func-
tion of Eq. (4) is inserted into Eq. (3), the limit of @—0 is
taken, and the sum is replaced with a 2D k integration.
Evaluating only the imaginary part of the integral and insert-
ing the result into the Kramers-Kronig relation leads to the
analytical expression

)2&/@ =NF,n(7n)2F"’ (8)

X'y‘y,n(w) =NF,n(7n
x, V1 —x;

with the definition
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arcsin(x,,)

n_—s (9)
xn\’l — Xy

and with x,=w/2A, and N, being the 2D density of states
(DOS) at Ey which is a constant proportional to |m| (de-
tailed calculation can be found in Ref. 17). Since the cross
section of the Raman process or Raman efficiency is propor-
tional to Im[yx,,,], the one band response is obtained by
taking the imaginary part of Eq. (8). For 0=x,<1 (0=w
<2A,) Im[arcsin(x,)] is vanishing and the square root is
entirely real leading to a vanishing Raman response. This is
due to the fact that no quasiparticles can be created without
breaking a Cooper pair which has a binding energy of 2A,,.
At w=2A,, (x,=1) the denominator hits zero and the function
diverges as a square-root singularity, a consequence of the
diverging SC quasiparticle DOS at this energy. Above w
=2A, (x,>1) the square root is entirely imaginary and in
Im[x,,,,] only Re[arcsin(x,)] remains which is a constant of
3 leading to Im[y.,, ,]=7Re[1/ (xny/)ﬁ)] for the single
band Raman response.

So far it was not taken into account that in the solid a
charged background of electrons is present that reacts
through long-range Coulomb interaction on the charge-
density fluctuations imposed by the Raman process. The
electron background rearranges in a way to screen the per-
turbative electric fields and thus works against the Raman
process. This screening effect can be included in the theory
within a random-phase approximation like sum!® that leads
in the limit of small q (compared to the inverse coherence
length ¢ and the Fermi wave vector ky) to an additional term
in the Raman susceptibility. This term includes a k sum over
the first BZ of y(k)\(k) that vanishes if (k) is not fully
symmetric, hence exhibiting sign changes in between differ-
ent parts of the first BZ leading to those parts canceling out
each other. Thus, only the fully symmetric A;, channel gets
screened and the screened Raman susceptibility is

(; Xyl,n(w))2

XRaman(w) = E ny,n(w) - 1—’ (10)
n 2 X1 I,n(w)
with
arcsin(x,,)
Xyl,n(w)zNF,nYn—/_n’ (11)
x N1 =x;,
arcsin(x,,)
Xi1a(@) =Np,—F—. (12)
1 F e xi

The second term in Eq. (10) is called screening term and
consists of a normalization by a sum over terms shown in
Eq. (12) and the square of a sum over terms shown in Eq.
(11). Considering only one free-electron band the Raman re-
sponse vanishes,
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(NF,nYnFn)2:| - 0

Im| Xraman(@)] = Im[Ng v, F,| —Im
Dtkanan(@)] = I[N 72F,] [ Vo F

(13)

This means that the screening of a free-electron background
is perfect and all charge-density fluctuations are completely
compensated by the rearrangement of the free electrons.

III. MULTIBAND EFFECTS IN THE SCREENED 4,
CHANNEL WITH CONSTANT SC GAPS

A. Two bands in A, symmetry

In contrast to the rather trivial one band case interesting
features appear as soon as two free-electron bands are con-
sidered. Taking a closer look at the second term in Eq. (10)
reveals that through the square in the numerator cross terms
of the complex functions x,,; , containing real and imaginary
parts corresponding to distinct bands contribute to the two
band Raman response. Having two bands furthermore adds
complexity by the possibility of choosing different effective
masses (magnitude and sign) and SC gaps. The general form
of the screened A;, Raman response shown in Eq. (13) ex-
tended for two bands can be transformed into a simpler form

IM[ Xgaman(@)] = IM[Np , YiF ) + Np2¥5F]
~ Im[ (NpanFi+ NF,272F2)2:|
Ng i Fy+ NpoF,

NF,IFINF,2F2:| (14)
NpFi+ NpoF)

=Im{(71 - )

For the sake of generality the effective masses (determining
¥, and N ,) and the SC gap (present in F,) are taken to be
different for both bands performing the transformation in Eq.
(14). We note here that for a two band model the vertex
corrections due to final state interactions can notably modify
the Raman response [compare Eq. (14) to Eq. (6) in Ref. 15].
The first thing that becomes obvious in the form of the last
line of Eq. (14) is that for equal effective masses (equal 7,’s)
the two band Raman response is vanishing independent of
the choice for the two SC gaps. So the screening is again
perfect.

Further investigations of the different two band features
require a case by case study of all possible combinations of
the two tunable quantities, namely, the effective mass and the
SC gap. First the case of two equal SC gaps (F|=F,=F) is
considered. In order to see the effect of screening in this case
one has to take a closer look at the screening term which is

Ne v +N 2 Im[F
Im ( F171 F,27’2) Fl=c m[*]’ (15)
NF,]+NF,2 M
with
| |m1|$+|m2|;
- = e (16)
M Im| + |m;)|
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FIG. 1. (Color online) Comparison of unscreened (black) and
screened (red) Raman responses in A, symmetry for two free-
electron bands with unequal Raman vertices. In the left column the
case of two equal constant SC gaps A, and opposite signs of the
effective masses is shown for which the screening is vanishing. In
the right column the case of two different SC gaps is displayed with
different combinations of effective masses m| and m, for the two
bands. In all three cases the singularities at twice the SC gap values
are removed.

In Eq. (15) all common constants are absorbed in C. The
absolute values of the effective masses in Eq. (16) have their
origin from the fact that the DOS is always a positive quan-
tity in contrast to the Raman vertices for which the sign of
the effective mass remains. In the numerator of the inverse
effective screening mass 1/M* the absolute value of the ef-
fective masses cancels out leaving only a sign dependence.
This feature has its origin in the two dimensionality of the
band structure for which the DOS is a constant proportional
to |m*| and will not remain for one- or three-dimensional
systems where the DOS includes an energy dependence. For
two bands with equal signs this leads to a finite screening
term and thus a partial screening (if the effective masses
have different absolute values) while for unequal signs the
numerator of 1/M* in Eq. (16) is zero. Thus, for a combina-
tion of a holelike and an electronlike band with equal SC
gaps the screening term vanishes and the two band Raman
response is entirely unscreened no matter how different are
the absolute values of the effective masses of the two bands.
This case is displayed in the left column of Fig. 1 where the
unscreened Raman response (black) and the screened one
(red) show no difference demonstrating the vanishing screen-
ing term. Additionally it has to be noted that the square-root
singularity previously found in the unscreened one band Ra-
man response remains in the screened two band Raman re-
sponse for equal SC gaps.

Now the case of unequal SC gaps is investigated. Rein-
serting the explicit form of F, [see Eq. (9)] into the simpli-
fied form of the screened two band Raman response [last line
in Eq. (14)] results in

014525-4



SCREENING OF THE RAMAN RESPONSE IN MULTIBAND...

Ng Np,AS|AS
Im| (7= %) e e o e | ()
N AS1SQs + NprAS>S0y
with the new short representations
AS, = arcsin(x,,),
S0, =x,\1—-x2. (18)

The form in Eq. (17) shows that the singularities at w
=2A, ,, present in the unscreened case, are both removed in
the screened case since the square-root terms SQ; and SO,
hit zero separately always leaving one of them finite. This
case is illustrated in the right column of Fig. 1 with different
combinations of effective masses for the screened Raman
response (red, orange, and yellow). For equal effective
masses (orange) a broad dome, peaked in the middle of twice
the two SC gap values, appears. When both bands have dif-
ferent effective masses (red and yellow) this shape changes
into a sharper peak located in the vicinity of twice the SC
gap corresponding to the band with the smaller effective
mass.

B. More than two bands in A, symmetry

Having seen the interesting features originating from the
interplay of two bands through their cross terms in the
screening term the next logical step is to investigate what
happens by including more bands into the Raman response.
Writing down a general form for more than two bands [ana-
log to the upper two lines of Eq. (14)] it becomes clear that
the screening vanishes only in very special cases. Only if all
SC gaps are equal and an even number of bands consisting of
the same amount of holelike and electronlike bands are con-
sidered the Raman response will be unscreened independent
of the absolute values of the effective masses. In all other
cases the strength of the screening will depend on the com-
bination of effective masses of the contributing bands. A
transformation analog to the one done in Eq. (14) including n
free-electron bands leads to

Ng F;Ng . F;
Im[XRaman(w)] =Im 2 (71 - 'Yj)ZML

ij (E NpF z)
]

. (19)

Here i, j, and ! run from 1 to n. This simplified form shows
that the screened n band Raman response consists of a sum
over all possible combinations of two band terms (with
i # j) each normalized by all n bands. Furthermore it is ob-
vious that terms including two bands with equal Raman ver-
tices vanish and that the dominating terms in the sum are the
ones including two bands with opposite signs since for them
the Raman vertices in the bracket add up.

Now the issue of the removal of the singularities previ-
ously seen for the two band response with unequal SC gaps
will be studied for more than two bands. In order to simplify
this investigation the example of a four band Raman re-
sponse, instead of the general n band form in Eq. (19), will
be considered first. For four bands there are six possible
combinations of two band terms that add up in the sum of the
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FIG. 2. (Color online) Unscreened (black) and screened (red)
Raman responses of four free-electron bands with constant SC
gaps A, in A;, symmetry. Singularities corresponding to uniquely
present gap values are removed by screening and the domelike
shape previously seen in the two band case appears.

total Raman response. Each of those six terms can be written
as

I )2 , 20
M=) KL+ KL+ KoLy 20
with
anNF,nAS(n)»
S0.S0;
L”=Q;QJ._ (21)
S0,

If the two bands i and j in Eq. (20) have different SC gaps
SQ; and SQ; will hit zero at different energies. Thus, the term
L;=SQ; will remain finite when L;=SQ;=0 and vice versa
leading to a finite denominator of Eq. (20) for all energies.
For equal SC gaps in Eq. (20), SQ; and SQ; are equal and
will vanish at the same energy resulting in a vanishing de-
nominator and hence a singularity at that energy. This means
that as soon as there are two bands with equal SC gaps con-
tributing to the four band Raman response there is one term
in the sum that is singular at twice this SC gap. An illustra-
tion of this is seen in Fig. 2 where different cases for the SC
gaps are considered. The unscreened Raman response (black)
shows the location of the singularities and the screened one
(red) displays which ones get removed through screening.
Whenever a gap is present more than once the screened four
band Raman response contains a singularity because of the
above given explanation. The generalization of the four to
the n band case can easily be done by adding further terms to
the denominator of Eq. (20). The argumentation will remain
the same as above and the discovered result that only singu-
larities corresponding to uniquely present gap values are re-
moved holds true.
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TABLE 1. Effective masses and chemical potentials used for

Fig. 3.

Inner I Outer I
Band parabola  parabola M pocket Blade
m* (m,) -2.1 -6 0.8 -0.61, -2.46
© (meV) 35 45 -17 10

IV. APPLICATION TO A MULTIBAND FREE-ELECTRON
BAND STRUCTURE BASED ON ARPES DATA
FOR AN IRON-PNICTIDE SUPERCONDUCTOR

A. Band-structure model

Here, the general investigations of free-electron Raman
responses in the SC state will be applied to a particular band-
structure model inspired by ARPES measurements. In
Ba,_ K FeAs the band structure was obtained>® consisting of
two holelike almost parabolic bands around the I" point and a
propellerlike structure around the M point. This propeller has
an electronlike parabolic band in its center which is sur-
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with g,h € Z. The blades are approximated by 2D ellipsoids,
having two different effective masses in the k,+k, and k,
—k, directions, represented by

h? [(k,— &)+ (ky - 5] :

€,(K)=—
bl o, 2
K2 k.—8)—(k,—8)]|?
i [(k,— &) ’_( v = 04)] . (23)
2m,_, V2
0.346

Here §;=¢;,+75 &2, with §; €7 and §,=-1,0,1, which

is extracted from Ref. 5. The effective masses and chemical
potentials wu, used for the different bands are given in
Table L.'® Equations (22) and (23) with the parameters from
Table I lead to the band structure shown in the left of Fig. 3
and its corresponding FS displayed in the top middle of
Fig. 3.

Combining Eq. (7) with Egs. (22) and (23) results in ex-
plicit Raman vertices for the used band-structure model. For
the parabolic bands we obtain

rounded by four holelike blades. In order to mimic this struc-
ture within a free-electron model the two bands around the I"
point and the one around the M point are approximated by a m

2D parabola which has the form 7’21 ¢ e
)= 2 (k= g+ (hy = ) 22 _
&( )—2m:<[( =8 +( vy~ )71 = w, (22) ’VBlg:)/ng:)/z%g:O’ (24)
. FS1stBZ
Free electron band structure YN
=i A K0 -
|\ =
ke ke
I| \ 1 Angular gap variation
L T
= g
\ 36
L
4o z n 2 2x

¢

FIG. 3. (Color online) Left: 2D free-electron band-structure model based on ARPES data (Refs. 5 and 6). Four different bands are
crossing the FS (red plane). The inner I" parabola (blue) and the outer I" parabola (yellow) are centered at the BZ center (I" point) and a
propeller structure consisting of the parabolic M pocket (green) surrounded by four elliptical blades (magenta/brown) is centered at the BZ
corner (M point). Top middle: FS topology of the first BZ (coloring of bands equal to left panel) together with the node of the extended
s-wave gap (red). Top right: contour plot of the magnitude of the extended s-wave gap given by Eq. (27) with Aj=10 meV. In the middle
(BZ center) the gap exhibits its maximum (+A,) and in the corner it reaches its minimum (—A;). Bottom right: Absolute value of the
extended s-wave gap at the FS for the different bands (coloring equal to left and top middle panels) as a function of angle ¢ (origin of polar
coordinates always in the middle of the band). The angular variation of the gap on the inner I" parabola (blue) and M pocket (green) is equal
to the one of the outer I' parabola (yellow) but not resolved on this energy scale. The elliptical blade is transformed to a parabolic band for
this illustration.
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and the Raman vertices for the elliptical bands are

)ﬁl m 1 1
Alg_2 * + ¢ )

x+y m:—y
i _ﬂ( 1 1 )
e 2\, om,)
I pl
;/j,zg = ;/glg =0. (25)

For the used band structure all bands contribute to the fully
symmetric A;, channel while the B,, channel only has a
contribution from the elliptical blades and the other symme-
try channels completely vanish. This is a consequence of the
free-electron model in combination with the effective-mass
approximation used here.

At this point it is interesting to know what other aspects
come into play by including elliptical bands. The effect that
is a direct consequence of the form of the Raman vertex and
the 2D DOS, both different for parabolic and elliptical bands,
is the vanishing screening for two bands of opposite signs
and equal constant SC gaps. Since the Raman vertex of an
elliptical band in A, symmetry is not just proportional to the
inverse effective mass but to the sum of the two different
effective masses in the particular k direction and the 2D DOS
is proportional to the square root of the product of the two
effective masses, the inverse effective screening mass differs
from Eq. (16). For two elliptical bands it changes to

m; m; m; mi\ |?
12 11 2 21
{ — \1+— = — \1+—
~ mj, mi, ms, m,

* [ % i [« *
M,y Nmy iy + N My,

s

(26)

where the plus sign describes two bands of the same sign and
the minus sign describes two bands of opposite signs, and
my,, and m,_, for band n are denoted by m,, and m,, for a
shorter notation. Equation (26) shows that for two elliptical
bands with equal signs the screening is not vanishing (just
like it is the case for two parabolic bands) and that its
strength depends on the absolute values of the effective
masses. Furthermore it can be seen that for two bands of
opposite signs and different ratios between m,, and m,, the
screening term remains finite, while for the same ratio of the
effective masses both terms in the numerator of Eq. (26)
cancel each other and the screening is vanishing.

B. Screened A;, Raman response with a constant gap

In order to be able to calculate the Raman response of the
introduced band structure shown in Fig. 3 the distribution of
the SC gap size along the different bands has to be specified.
As a first step the SC gaps are assumed to be constant on
each band which makes it possible to directly apply the gen-
eral investigations of Sec. III. ARPES measurements find
two different SC gaps® of which the smaller one is located on
the outer I' parabola and the bigger one is present on all the
other bands. The magnitude found for the smaller gap is
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FIG. 4. (Color online) Unscreened (black) and screened (red)
Raman responses in A, symmetry of the entire first BZ shown in
Fig. 3 with two different constant SC gaps. The square-root singu-
larity of the smaller gap (present on the outer I' parabola) is re-
moved by screening while the one at the bigger gap (present on all
other bands) remains.

roughly half the size of the bigger one. Thus, the distribution
of the SC gaps used here consists of a smaller gap on the
outer I" parabola and a bigger one on the inner I' parabola;
the M pocket and the blades are both related by 2A;=A,.
The screened (red) and unscreened (black) A;, Raman re-
sponses for these assumptions presented in Fig. 4 are remi-
niscent of the ones shown in the lower right of Fig. 2. In both
plots the singularity at twice the smaller SC gap is removed
since it is uniquely present and the one at twice the bigger
SC gap remains because three bands exhibit this same gap
value. As previously mentioned the B,, Raman response just
has a contribution by the blades leading to a simple square-
root singularity structure like in the left-hand side of Fig. 1
with the singularity located at twice the bigger SC gap. The
other two symmetry channels have vanishing Raman vertices
and hence show no response at all in this model.

C. Aj, Raman response with an extended s-wave gap

A next step in the calculation of Raman responses for the
chosen band structure is to drop the assumption of constant
SC gaps and to use one general k-dependent SC gap that
determines the gap magnitude on each band dependent on its
location in the first BZ. Experimental results are at this point
still controversial even for compounds of the same stoichio-
metric family (122 in this case) with evidence for gap nodes
in some experiments'® and measurements of finite gaps hav-
ing no nodes in other experiments.®** However, the candi-
date favored by the majority of publications, for
example,'>2122 is the extended s-wave gap which is repre-
sented by the following analytical expression:!?

A(k) = Ag[cos(k,) + cos(k,)]. (27)

Here, k runs from —1 to 1. This gap exhibits a diamond-
shaped node in the first BZ, shown as a red line in the top
middle panel of Fig. 3, which does not coincide with any of
the bands at the FS. Thus, all bands are fully gapped but
there is a variation of the gap magnitude on either one of
them. This angular variation on each band at the FS (after a
transformation into polar coordinates) is displayed in the bot-
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FIG. 5. (Color online) Unscreened single band Raman responses
in A}, symmetry of all free-electron bands of the band structure
displayed in Fig. 3 (same coloring) with extended s-wave gap. All
bands show a threshold at twice the minimal gap value and a loga-
rithmic singularity at twice the maximum gap value. These features
are only resolved on a smaller energy scale for the inner I" parabola
(yellow) and the M pocket (green) because of the smaller variation
of the gap magnitude (see Fig. 3). The blade exhibits an additional
discontinuous falloff at higher energies corresponding to the top of
the band in the SC state.

tom right panel of Fig. 3. The extended s-wave gap has its
maximum A, at the I point and its minimum of the same
magnitude but negative sign (=A,) is located at the M point.
Measured values of the maximum gap®2?>2* range in between
6 and 12 meV supporting the choice of Ay=10 meV for the
following calculations.

Combining Egs. (3) and (4) at T=0 and noting that the
Raman vertex is a constant in the applied model leads to

4A2(k
ny,n(w) = lz ')/2 n( ) (28)

N "EK[4EXK) - (0 +ia)?]

for the Raman susceptibility of the nth band. For the numeri-
cal calculations the sum is replaced with a 2D k integration
in polar coordinates and a constant broadening parameter of
a=0.01 meV representing a clean system is used. The ob-
tained unscreened single band Raman responses are dis-
played in Fig. 5 in the corresponding coloring to the first BZ
FS in Fig. 3. The plots show three main features that are seen
best in the magenta response of the blade since this is the
band exhibiting the largest gap variation at the FS. There is a
discontinuous_falloff at about 25 meV corresponding to w
=2y ,uiﬁA,%me which denotes the top of the band in the
SC state above which no quasiparticles can be excited. This
feature is seen at higher energies for the other bands (since
they have larger w’s) and thus is not present in this plot. At
twice the maximum SC gap there is a logarithmic singularity
and at twice the minimum SC gap a threshold can be seen.
These two features are also obtained for the inner I" parabola
(yellow) but can only be found at a much smaller energy
resolution for the other two bands since those have a much
smaller gap variation (see lower right of Fig. 3). The nature
of the logarithmic singularity and the threshold are found in
analytical investigations of the imaginary part of Eq. (28)
using a simplified gap of the form A($)=A4,,+A cos(4¢),
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FIG. 6. (Color online) Screened multiband Raman responses in
Ay, symmetry with extended s-wave gap for combinations of the
free-electron bands shown in Fig. 3. Top left: Raman responses for
all combinations of two holelike bands (4 Bl and T'o: black; 4 BI
and T'i: red; T'i and I'o: orange). Top right: Raman responses for all
combinations of a holelike and an electronlike band (Mp and 4 Bl:
black; Mp and T'i: red; Mp and I'o: orange). Bottom: Raman re-
sponse of all four bands of the model. The two band terms shown in
the two upper panels renormalized by all four bands sum up to this
response resulting in a flat continuum above twice the minimum
gap of the blade and a sharp peak near twice the maximum gap of
the M pocket. Since all extremal gap values are different for all
bands all singularities are removed for the screened two and four
band responses.

with ¢ running from 0 to 27. Noting that the integration
must only run over the real part of the integrand leads to
differences in the integration boundaries at twice the mini-
mum and maximum SC gaps resulting in the two distinct
features (for a detailed investigation, see Ref. 17).

Knowing the single band Raman response functions is
now used to calculate all possible combinations of the
screened A, two band Raman responses and the screened
A, Raman response of all bands. According to Eq. (19) the
former ones allow us to explain the origin of the features
seen in the latter one since it consist of a sum of the renor-
malized two band terms. In the upper left of Fig. 6 the three
combinations of two holelike bands are shown and in the
upper right the corresponding plot for the combinations of
the three holelike bands with the electronlike M pocket is
illustrated. The total screened A o Raman response, contain-
ing all bands in the first BZ, is displayed in the bottom panel
of Fig. 6. Its main feature is a sharp peak at about 20 meV
whose origin lies in the three electron-hole two band re-
sponses. They all show a peak slightly below twice the maxi-
mum SC gap of the M pocket and those add up to the ob-
served peak in the total Raman response. The three hole-hole
two band terms generally show a weaker response since the
screening is more effective for them leading to a rather fea-
tureless broad continuum down to the energy of the threshold
of the blade. Since all bands have different crossing lines
with the FS the maximum SC gaps are different on all of
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FIG. 7. (Color online) Left: FS*™ of first BZ of the modified
free-electron band-structure model together with the node of the
extended s-wave gap (coloring of bands as in all other figures).
Right: Raman responses in B,, (green) and screened A;, (blue)
symmetries. The B,, response is multiplied by 5.

them and thus all logarithmic singularities are removed cor-
responding to the argumentation in Sec. Il B. The B,, Ra-
man response again only consists of the four blades which
results in a Raman response entirely equal to the magenta
single band Raman response of the blade seen in Fig. 5 but
multiplied by 4. All other symmetry channels are again van-
ishing.

D. Comparison with experiment

The recent measurements of Raman responses'* on

Ba(Fe,_,Co,),As, only partially resemble the obtained Ra-
man responses with an extended s-wave gap. While the neg-
ligible contribution of the SC state to the B, and A,, re-
sponse in the experimental data is consistent with the
vanishing response in those channels for the used band-
structure model the A, and B,, responses are quite different.
The structure in the B,, response of the data points toward a
power-law behavior for small energies and thus supports a
SC gap with nodes and not the threshold observed in this
work. Even stronger disagreement is seen in the A, channel
where no sharp peak appears in the data but a rather broad
dome, peaked at higher energies than the peak in the B,
response, is found. However the logarithmic-singularity
shape of the B,, peak of the here presented Raman response
is also present in the data. One way to tune our band-
structure model in order to get closer to the measured data is
to shift the blades further toward the node line of the gap. To
be consistent with the measured peak positions the effective
masses of all bands, except the outer I' parabola, and the
chemical potential of the M pocket are changed and the
maximum gap value is set to Ay=7 meV. All this and a
larger broadening parameter «=0.2 meV lead to the FS to-
pology (FS*) and the Raman responses illustrated in Fig. 7.
The threshold in the B,, channel (green) is now at small
energies. The total shape is close to the experimental one but
to obtain the proper intensity the shown Raman response is
multiplied by 5 since the spectral weight of the B,, channel
is quite small in the calculated response. This is a conse-
quence of a lack of contribution by other bands than the
blades to the B,, channel and might also be due to some
resonance effects in the experiment that are not taken into
account in the calculations within effective-mass approxima-
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tion. The A;, Raman response (blue) in the right-hand side of
Fig. 7 is now also quite close to the measured one except for
the still quite obvious peak at about 13 meV. In general the
agreement between the Raman responses of the data on
Ba(Fe,;_,Co,),As, and the modified free-electron band struc-
ture is quite good which shows that the obtained shape of the
data does not necessarily have to be explained with gap
nodes. Furthermore it is not clear that the measured com-
pound is in the clean limit still leaving the possibility of
rather strong impurity scattering that could also explain the
low-energy tail of the data. With the introduction of possible
scattering centers into the FeAs layer (where the important
physics for SC is assumed to take place) by the replacement
of Fe with Co, this scenario is quite reasonable. Certainly
more data on other compounds are needed to clarify these
issues.

V. CONCLUSION

In this work we performed model calculations of Raman
responses for a multiband superconductor in a 2D free-
electron model. For a constant SC gap parameter analytical
calculations were used to investigate multiband effects in the
screening correction term in the fully symmetric A, channel.
It was shown that for two parabolic bands with equal SC
gaps and opposite signs of effective masses the screening
term vanishes which also was proven to hold true for two
elliptical bands with equal ellipticities. Moreover the re-
moval of the singularities through screening for two bands
with different SC gap sizes was presented. This feature re-
mained in the Raman response of multiple bands for all con-
tributing bands exhibiting a uniquely present SC gap size and
the example of a four band response was discussed. Addi-
tionally it was shown through analytical calculation that
multiband responses consist of a sum of two band terms
normalized by all contributing bands.

The general effects found for a constant SC gap parameter
were then used to explain the SC Raman response of a model
free-electron band structure inspired by ARPES measure-
ments on iron-pnictide materials. Using a SC gap of ex-
tended s-wave symmetry the single band response features, a
threshold at twice the minimum SC gap value and a logarith-
mic singularity at twice the maximum SC gap value, were
clarified. Furthermore we identified that the main features of
the four band Raman response of the model band structure
with the extended s-wave gap were originating from the two
band terms consisting of bands with opposite signs in the
effective masses. A comparison of this four band Raman re-
sponse with experimental data was done and by modifying
the band-structure parameters an acceptable agreement was
demonstrated.
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