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Electronic Raman Scattering of OverdopedI'l;Ba;CuQOg+s in High Magnetic Fields
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The excitations across the superconducting gafp-ffeak in Bj,-symmetry Raman spectra) in an
overdoped TJBa,CuGs4 s single crystal have been studied as a function of temperature and field. The
2A-peak intensity, which we interpret as the density of the superconducting condensate around the
gap antinodes, is a linear function of temperature, but a nonlinear function of the field. The latter is
attributed to renormalization of quasiparticle spectra in the vicinity of vortex lines in the mixed state.
The 2A-peak is present above the irreversibility line and yields a conventional temperature dependence
of the effective upper critical field. [S0031-9007(97)02748-8]

PACS numbers: 74.25.Ha, 74.60.Ec, 74.72.Fq, 78.30.Er

One of the properties of the cuprate high temperaturef a superconducting gapg\(k), causes suppression of
superconductors is their high upper critical field%,,,  the low-frequency part of the continua, and the scattering
governed by a short in-plane superconducting coherencgcross the superconducting gap (breaking the Cooper
lengthé =~ 10 — 20 A and a large Landau-Ginzburg pa- pairs) develops a peak, the so callii-peak [5], in the
rameterA/¢ (the in-plane London penetration depth=  Raman spectra. The recent resonance Raman study of
103 A). These high critical fields have been obstacleshe 2A-peak and the normal state continuum concludes
to the study of the field-induced superconducting-normathat the peak truly results from renormalization of the
state transitions at low temperatures. In two recent Leteontinuum in the superconducting state [6]. The shape
ters, Mackenzieet al. [1] and Osofskyet al. [2] have ob- and intensity of theA-peak in cuprate superconductors
served that in the overdoped cuprates a critical #6147"),  where the gap functioA (k) is believed to be anisotropic
associated with the onset of dissipation, is depressed twave been discussed in a number of theoretical studies [7]
low values around’., but displays a steep rise with no based on earlier work on conventional superconductors
sign of saturation as the temperature is decreagéti’) [8]. These calculations produce a peak similar to the
has been interpreted as the upper critical field. The lovexperimentalA-peak in the superconducting state with-
values ofH*(T) enable a study of the renormalization of out considering the normal state continuum, but no one
the quasiparticle spectra in the field-induced transitions byet has suggested a model that describes the continuum
spectroscopic methods. In this Letter we use electroniand its renormalization starting from the normal state
Raman scattering from overdoped B, CuQ; 45 to study  intensity. There is a general consensus, however, (1) that
the redistribution of quasiparticle spectra near the supethe position of the peak is proportional to a weighted
conducting transition in the presence of magnetic fieldaverage of the superconducting gap value near the Fermi
up toH.,. We find that a local superconducting order issurface and that the shift of the peak position for vari-
present at temperatures and fields above the irreversibilityus scattering geometries contains information about
field obtained from the magnetization hysteresis curveshe anisotropy of the superconducting order parameter;
We extract the temperature dependence of an effective ui2) that the peak intensity is proportional to the density of
per critical fieldH,(T) that differs qualitatively and quan- the superconducting condensate (Cooper-pair density).
titatively from H*(T). The Raman intensity is related to the Raman response

Electronic Raman scattering in metals arises fromfunction via the fluctuation-dissipation theorem,
electron-hole or multi-quasi-particle excitations around
the Fermi surface and provides spectroscopic information Hw,T) «[1 + n(w,7)]x"(w,T), (1)
about the quasiparticle excitation spectra. For strongl
correlated systems incoherent quasiparticle scatterin
can lead to finite Raman intensity over a broad regio
of frequency [3,4] and, indeed, for the superconductin
cuprates a flat continuum extending to at least 2 eV B o
has been observed. In the superconducting state the Xselw,T) = ZV(k) {(ko,T). (@)
frequency distribution of the low-frequency tail of the k
continua changes to reflect the quasiparticle spectra renarere y(k) is a light scattering vertex (or a Raman form
malization due to superconducting fluctuations. Openindactor) and{(k, w, T) is a Tsuneto function

here n(w,T) is the Bose factor. In the conventional
alculations extended for an anisotropic gap function, the
aman response function is [7,9]
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A(k)? E(k The Raman spectra were measured in the backscatterin
k. w.7) — 2K tan){ (k) b 9

~ E(k)? 2kpT } [6QEK) + w)]. geometry from the crystal mounted in a continuous helium
(3) flow optical cryostat (Oxford Instruments). The cryostat

. was installed in a bore of a superconducting magnet
In Eq. (3) E(k)> = e(k)> + A(k)? is the square of the

1- 9) y Hal (Oxford Instruments). The applied magnetic field was
quasiparticle energy an@(k) is the fermionic band noma] to theab plane of the sample surface. Circularly

dispersion relative to the Fermi energy. The Raman f()"anlolarized light of different handedness for the excitation
factory(k) in Eq. (2) depends on scattering geometry anGyn the scattered beams were used to select maingithe
the specific 'model for photqn poupling to the quaSipar'symmetry spectral component [assumibg, (14/mmm)
ticle excitations. For excitations oBi, (x> = %) symmetry]. TheB,, component is known to be quite
symmetry, which are the subject of the current work, th%eak. A resonance Raman study 0bB#CuQy,s has
form factor has nodes for wave vectors along the diagognown that phononic scattering resonates much stronger
nals |k«| = |k,| and |s#peaked argTund antinode wavey,yard violet excitation than the electronic scattering [6].
vectors {kmy ) = {(0, =) and (£,0);, where the 14 minimize the strength of the phononic scattering and of
superconducting gap magnitude is believed to reackhe |yminescence contribution [11] superimposed on top
Its maximum value2A,y. Thus for the Bi, Ssym-  of glectronic scattering continuum, we have used the red
metry x;.(w,T) is peaked about2An.(T). The  g477 A excitation from a KF laser. To reduce the heating
temperature antbr magnetic field dependence of the py |aser jllumination, we used only about 1 mW of the
2A-peak position and intensity probes the magni-ncident laser power focused ontd@ xm diameter spot
tude of the superconducting gap and the Cooper-pajgy theqp plane of the as grown mirrorlike crystal surface
density. _ . [12]. In the data analysis we account for about 2 K laser
The overdoped $BaCuGs.; single crystal used in peating. The spectra were analyzed by a triple grating
this study was grown as described in Ref. [10] and hagpecrometer with a liquid nitrogen cooled CCD detector.

superconducting transition &, = 26 K (AT, = 2 K). Figure 2 shows the low-frequency electronic Raman
‘The magnetization measurements have been performedtinyum and its redistribution as a function of the
with a 7 T SQUID magnetometer (Quantum Design). The

magnetization curves as a function of field perpendicu- 16
lar to the ab plane of the sample surface at tempera-

tures between 2 and 15 K are shown in Fig. 1. In the 1t
inset the temperature dependence of the irreversibility

field, H;.(T), extracted from the magnetization hystere- 2|
sis curves is presented. Analogously to #&T) data

(see Ref. [1]),H;(T) starts from low values aroung., 10 f
has a positive curvature, and continues to rise sharply to

the lowest measured temperature (2 K). 8
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FIG. 1. The field dependence of magnetizatiéh iformal to  FIG. 2. The B,,-symmetry Raman spectra as a function of
ab plane) measured at temperatures between 2 and 25 K. Ins¢emperature (a) at zero field, (b) at 2 T field, and (c) as a
The temperature dependence of irreversibility field obtainedunction of field normal to the:b plane at 5 K. Note offset of
from the magnetization hysteresis curves. the intensity scale.
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temperature at zero and 2 T field and of the field afThe 2A-peak is clearly present at values of temperature
5 K [13]. In the normal state (above the superconductingand field above the irreversibility linéf;.(T) [see, for
transition) the continuum is flat with a slight rise below example, the 12 K, 2 T spectrum in Fig. 2(b)].

50 cm~! [14]. The spectral shape at 27 K and zero field We interpret the nonlinear intensity drop as a result of
matches well the shape at 5 K and 8.5 T. Cooling orthe quasiparticle density renormalization in the vicinity of
field reduction drives the crystal into the superconductingAbrikosov vortex lines in position space and in the region
state, and the spectra exhibit an intensity reduction belowlose to the antinodek,,,, in momentum space. In the
60 cm™! simultaneously with development of 2A- semiclassical approach and for fields; < H < H,,
peak. As a result of the intensity redistribution, allthe local quasiparticle energ¥mixeq(k,r), is Doppler
spectra cross arounéd cm~!'. For zero field and 5 K shifted by the local superfluid velocity,(r) = %/2m,r

the peak position is at85 cm™! (=4.9k3T.). Below at a distance from the vortex core [15,16]

the superconducting transition the position of the peak _

that is proportional t®A .« (T, H) weakly depends on Enmixea(k, 1) = E(k) + ivs(r) - K. (4)
both conditions, temperature and field, showing a slighiAs a result, the Tsuneto functiodixeda(k,r, w,T), is
softening at higher temperatures and/or fields where dependent in the mixed state and an averaging over
the peak intensity becomes weak. This implies thathe area in the vortex vicinity for the Raman response
the superconducting gap opens up very rapidly near th&unction is required:

boundaries of the superconducting phase diagram (below (k)2
T, and H,»). Xilw, HT) = Y =
In Fig. 3 we show the2A-peak intensity as a func- k7R
tion of temperature for fields between 0 and 3 T. Room
For a lack of a fitting function, we determine the intensity X [g [0 bmixea(ko T @0, T)dprdr.

as a difference between the intensity in the maximum (5)
of the peak and the spectral crossing poist( cm™!)

intensity (see Fig. 2). The peak is associated with CoopaHere R(H) ~ £é+/H.,/H < A is half of the intervortex
pair breaking excitations; thus the intensity shoulddistance. The Doppler shift results in partial redistribution
be proportional to the density of the superconductingof the 2A-peak intensity to other frequency regions,
condensate. Quite surprisingly, the intensity showsausing the peak broadening. The remaining intensity at
a linear temperature dependence down to almost thg = 2A is governed by that quasiparticle density that
lowest measured temperature for all measured fieldsioes not undergo the shift; for each momenthnthe
This temperature dependence cannot be obtained withifonshifted quasiparticle density is collected from a line in
the framework of the conventional model Ca|CU|ati0nSposition space where the superfluid velooityis normal
[Egs. (1)—(3)], and it points out the importance of theto the momenturrk. On the other hand, the Doppler
incoherent processes. shift is in inverse proportion to the distance from the
In Fig. 4 we plot the2A-peak intensity in the mixed vortex core. Bearing in mind that the Raman form factor
state as a function of the field for temperatures between
5 and 22 K. The intensity exhibits nonlinear behavior.
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FIG. 4. The field dependence of tBA-peak intensity for the
Temperature (K) temperatures between 5 and 22 K. Lines present fits of the
scaling function in Eg. (6) to the data. Inset: The temperature
FIG. 3. The temperature dependence of 2hlepeak intensity dependence of the effective upper critical field obtained from
for the fields between O and 3 T. the fit.
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is peaked at the antinodes’ momenta, for high enoughive curvature and saturation at low temperatures about
fields the response function is in a good approximatiorb T. The latter provides an estimate of the in-plane su-
proportional to perconducting coherence lenggh= 100 A, considerably

y 1 k2w longer than for optimally doped superconductors. The
Xsc(2A, H) o mj; j; 8(hvy(r) - Kmax) dprdr local superconducting order parameter was found to be
present above the irreversibility temperature and/or field.
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