Chirality density wave of the ‘hidden order’ phase in URu2Si2

150212154625_1_540x360 Authors: H.-H. Kung, R. E. Baumbach, E. D. Bauer, V. K. Thorsmølle, W.-L. Zhang, K. Haule, J. A. Mydosh, G. Blumberg

Abstract: A second-order phase transition in a physical system is associated with the emergence of an “order parameter” and a spontaneous symmetry breaking. The heavy fermion superconductor URu2Si2 has a “hidden order” (HO) phase below the temperature of 17.5 kelvin; the symmetry of the associated order parameter has remained ambiguous. Here we use polarization-resolved Raman spectroscopy to specify the symmetry of the low-energy excitations above and below the HO transition. We determine that the HO parameter breaks local vertical and diagonal reflection symmetries at the uranium sites, resulting in crystal field states with distinct chiral properties, which order to a commensurate chirality density wave ground state.

The paper is covered by several News medias: