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S1 Material and methods

S1.1 Sample preparation

The Raman scattering experiments were performed from the ab-plane of stress free URu,Si,
single crystals grown by the Czochralski method and post-processed by electro-refinement (15,
33, 34). The ab-plane residual resistivity ratio for crystals from the same batch as used for this
Raman scattering study are between 300-700 (35). The cleaved samples were examined under
Nomarski microscope to find a stress free area, and the crystallographic axes were determined
by Laue diffraction.

S1.2 Experimental methods

The URu,Si, single crystal was cleaved and kept in vacuum before being mounted into a con-
tinuous He gas flow optical cryostat. All Raman scattering measurements were performed in a
quasi-backscattering geometry along the sample c-axis with 752.5 nm (about 1.65 eV) excitation
from a Kr* laser. The incident laser beam was less than 7mW, and all reported temperatures
are corrected for laser heating.

Scattered light was analyzed by a custom-designed aberration-corrected, triple-grating spec-
trometer equipped with master holographic gratings, imaging system, and liquid nitrogen cooled
CCD detector, tailored for low frequency polarization resolved electronic Raman spectroscopy
studies at low temperatures.

The spectra was corrected for the spectral response of the spectrometer and CCD to obtain
the Raman intensity in the scattering geometry e e; (36):

Iesei<w7 T) = (TL((’U? T) + 1)ngei(w7 T) + L(T) (Sl)

Raman response function x”(w,T") was calculated from the measured Raman intensity using
Eq. S1, where n(w, T") is the Bose-Einstein distribution function, and L(7") is a small constant
background resulting from luminescence of the sample and residual background of the system
determined from independent reference measurements.

The scattering geometries are noted by the directional vectors of incident and scattered light
polarizations: e,e; =XX, XY, X'X’, X'Y’, RR and RL, where X=[100], Y=[010] are aligned
along crystallographic axes, X'=[110], Y’=[110] are aligned 45° to the a-axes, R=(X+iY)/\/2
and L=(X-iY)/y/2 are right and left circularly polarized light, respectively. For example, in
the XX scattering geometry, both the incident light and scattered light polarizations are aligned
parallel to the crystallographic a-axis. For the X'Y’ scattering geometry, the incident light polar-
ization is orthogonal to the polarization of the scattered light, while the sample crystallographic
a-axis is rotated 45° with respect to the incident and scattered light polarization. The residual
background is different in parallel and cross scattering geometries. The ion laser plasma emis-
sion lines at 753.2 nm, 753.4 nm and 753.7 nm were fitted with a Lorentzian and then subtracted
out from data.



S1.3 Statistical methods
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Figure S1: The Raman response in six scattering geometries at 7 K. The error bars show one
standard deviation associated with each data point. The irreducible representations of the Dy
group are labeled in each panel. The instrumental resolution is shown in the upper-right corner
of the XY panel. The red lines are fits to a Lorentzian centered at 1.6 meV using the method of
maximum likelihood (37). The fitted intensity values are Ixy = 2.7 £ 0.1, Ixy = 2.9 £ 0.1,
Igr =3.2+0.1, Ixx = 0.91 £ 0.04, Ixxr = 0.73 £ 0.04, and Ig;, = 0.53 £ 0.04.

Figure S1 shows the polarization resolved low frequency Raman response function in six
scattering geometries within the energy range of 2.5 meV. The data are fitted to a Lorentzian
centered at 1.6 meV (convoluted by instrumental resolution). The fitted intensity values are
given in figure S1 caption. The intensities can be separated into distinct symmetry channels,
IAgg = (IXY + Igr — IX’X/)/Q = 2.6 £ 0.1, IAlg = (IX/X’ + Igrr — Ixy)/2 = 0.7 £ 0.1,
IBlg = (leyl + IXX — IRR)/2 = 0.3 % 01, and IBQg = (IX’X’ + IXY — IRR)/2 =0.1+0.1.
Hence, the intensity ratios of A;, to Ay, channel is 25 & 3%, By, to Ay, channel is 11 £ 3%,
and By, to Ay, channel is 3 + 3%. Therefore, we claim the observation of the 1.6 meV mode
dominantly presenting in the A,, symmetry channel with a weaker intensity leakage into the
A1, symmetry channel in the HO phase.



S1.4 Phonon width and leakage at low temperature

The crystal structure of URu,Si, allows 4 Raman active phonon modes, A4, B, and 2F, of
D4, group, where the B, phonon only involves the vibration of Ru atoms (25, 38). Figure S2
plots the Raman response function in the X"Y’ scattering geometry at 7 K, containing the B,
phonon centered at 20 meV. The phonon width is composed of its decay rate and inhomoge-
neous broadening due to stress field (38, 39). Hence, the phonon width at low temperature is
an indication of crystal quality. It has been demonstrated that stress field on the sample induce
local anti-ferromagnetic domains (11, 40). Here, the observed phonon width is smaller than
the values reported elsewhere for this material (38, 39), indicating that the measured surface is
stress-free as it is required to study the symmetry of the order parameter in the HO phase.
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Figure S2: The Raman response function in X'Y’" and X'X’ scattering geometries at 7 K. The
data was taken from the same surface as the rest of data presented in this report. The red curve
is a fit of the Raman response function in XY’ scattering geometry (solid squares) containing
the B, phonon; whereas the pink line is a fit to the Raman response function in X'X’ scattering
geometry (open circles) containing no phonon. The observed mode is close to resolution lim-
ited, the deconvoluted full-width-at-half-maximum of the B;, phonon is about 0.1 meV. There
is no observable B;, phonon leakage into other symmetry channels at 7 K. The instrumental
resolution is shown in the upper-left corner.

Recently, a small lattice distortion along the crystallographic a-axis was discovered by X-
ray diffraction (20), where the observed orthorhombicity is 6.2 x 1075, In general, the broken
four-fold rotational symmetry allows the 5;, phonon at 20.0 meV to leak into other channels.
However, within the experimental accuracy, no such orthorhombicity induced phonon leakage
was observed in our data. The absence of the phonon leakage is consistent with the tininess of
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the orthorhombicity observed by X-ray diffraction (Fig. S2).

S2 The dominant crystal field states of U-5f electrons

Histogram of j=5/2 states

12) (B,)
(A

Figure S3: Probabilities to find an U-5f electron in any of the atomic crystal field states, as
computed by DFT+DMFT at T' = 20 K. The states with occupancy 1, 2, 3, and 4 are colored
in yellow, red, green, and blue, respectively. The few most important states are labeled in
accordance with the table S1.

The U-5f electrons have a dual character, i.e., they are partly itinerant and partly localized.
In the momentum space, this is reflected in very narrow bands that the U-5f states form (mass
enhancement of the bands measured in ARPES exceeds density functional theory (DFT) calcu-
lated masses by a factor of 10 (41, 42)). In the real space picture, their partially itinerant nature
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Table S1: The crystal field states of U-5f electrons with two electrons in the j = 5/2 subshell,
categorized by irreducible representations (IRR) of the Dy, group. These states have total an-

gular moment J = 4 and magnetic quantum number M; runs from —4 - - - 4. The states on the
right hand site are labeled by their A/; value, e.g. |0) = |J =4, M; = 0)

IRR state
Azg To) | [0) = 55(14) — [-4))
Ay (T | 1) = <22(|4) + |—4)) — sin 0 |0)
Ay (T | [2) = 52(]4) + |=4)) + cos 0 |0)

> =
> =
> =
E, () | |3) = cos¢|—3) +sinp[1)
E, (Fég) |4) = cos ¢ |3) 4+ sinp |—1)
E, (Fg) |5) =sing|—3) — cos ¢ |1)
)= )
> =
> =

E, (Fg%) |6) =sin¢|3) —cosp|—1
By (Ts) | [7) = 55(12) +(-2))

By, I'y) | |8 \/L§(|2> —[=2))

is reflected in the atomic histogram, which displays finite probability for many atomic states, as
opposed to a single state in the atomic limit. In figure S3 we present the real space histogram
showing the probability for U-5f electron in the j = 5/2 shell to be found in any of the crystal
field states. The average number of U-5f electrons within combination of DFT and dynamical
mean field theory (DMFT) is ny ~ 2.4, similar to experimental value (27), with roughly 0.35
electrons in j = 7/2 subshell and roughly 2.05 electrons in j = 5/2 subshell. Due to itinerancy,
these electrons in j = 5/2 shell fluctuate between various atomic configurations, and can be
found in any of the 64 possible atomic states. The DFT+DMFT calculation in paramagnetic
state, displayed in figure S3, shows that the most probable are configurations with two electrons
N = 2 (red color), with three N = 3 (green color), as well as N = 1 (yellow) and N = 4
(blue) electrons. Since the N = 2 states contribute more than 75% probability, we will here
concentrate our discussion here on valence N = 2 for j = 5/2 electrons. The possible atomic
configurations at N = 2 are listed in table S1.

S3 The hexadecapole order parameter

For low energy spectroscopies, it is sufficient to introduce a minimal model containing the two
lowest energy states in table S1, |0) and |1). In this section, we will introduce the hexadecapole
order parameter, while in the next section, we will explain the Raman scattering data within the
minimal model.

The hexadecapole order parameter results in purely real mixing between |0) and |1) in
the low energy model, but when extended to other relevant atomic states, which can not be



neglected due to itinerancy of the system, it can have composite nature, i.e. a small admixture
of By, type to leading Ay, type order parameter, previously identified in Ref. (6). Here, we
propose an example of a composite order parameter containing both the A, and B;, symmetry,
and reconcile the Raman scattering results that identify the order parameter of Ay, symmetry,
and torque experiments (/9), which require the breaking of four-fold symmetry of the tetragonal
lattice in the hidden order state. Such hexadecapolar order parameter can take the form

Hpew = [(Jo — Jy) (Jo + Jy) (Jody + Jydo) + (Jody + JyJo) (T + Jy) (o — Jy)] (S2)

v
24+/35
where J,, J,, are angular momentum operators, V' is the hexadecapole order parameter strength,
and we assume staggered long range order with wave vector ) = (0, 0, 1). This order parameter
is an extension of previously proposed antiferro-hexadecapolar order parameter (6), but here
extended to a larger Hilbert space outside the low energy model discussed in Ref. (43). This
order parameter can also be expressed in the form

174 1
Hpow = —— | —(Jt = TJH) +2(J% = J? S3
h 24@%@ ) +20J; - ;) (S3)

to emphasize its decomposition into purely A, type (J{ — J*) and By, type (J7 — J2).

It was pointed out in Ref. (44) that the Ay, part of the local order parameter and the
antiferro- staggering lowers the group symmetry from the high temperature /4 /mmm (No. 139)
to P4/mnc (No. 128 ). No change in lattice distortion is expected across such a phase transi-
tion (44, 45), therefore it cannot be detected by X-ray diffraction. The B, distortion, however,
couples to the lattice much stronger than the Ay, part, and should be possible to identify. Re-
cently, a small lattice distortion along the crystallographic a-axis in the hidden order phase
under zero field has been reported by Tonegawa et al. (20). Such a distortion is in agreement
with our proposed hexadecapole order parameter. The tiny lattice distortion arises because the
order parameter is staggered in the unit cell, such that the distortion in adjacent layers along c-
axis is in opposite direction. Therefore, within a complete unit cell containing two U atoms, the
distortion cancels out to first order approximation. Since the B, partis very weak (i.e., involves
higher energy states) and due to this cancellation within a unit cell, only a small distortion can
be directly observed by experimental techniques, such as X-ray diffraction.

When this order parameter is written in the space of crystal field levels, the Hamiltonian



takes the form

Hy| 10) 1) 2) [ [7) 8 | [8) |4)
0y 0 Vhe —Vhi| 0  Vbs | 0 0
1) | Vhe wo 0 | Vb, 0 0 0
2)|=Vhy 0 e | Vbg 0 0 0
7V 0 Vb, Vbs | e7 —Vhy| 0 0
8)| Vbs 0 0 |—Vhy, =g 0 0
3 0 0 0 0 0 ez Vb
4 0 0 0 0 0 | Vby s
5] 0 0 0 0 0 |iVhy —Vb
)] 0 0 0 0 0 | —Vby —iVhs

(S4)

where h; are constants that determine the A, part of the order parameter, and b; determine its
B4 part. Explicitly, h; and b; take the form

ho = sinf
hi = cos @
3 /5
"2 =5\7
hy = V3
2
b sin ¢(3v/7 cos ¢ + 5sin ¢)
0:

6v/35
cos ¢(5 cos ¢ — 3+/7sin ¢)

by —
' 6v/35

by 3v/7 cos 2¢ + 5 sin 2¢
? 12v/35

2V/7  6V5

6v5  2V7
o L
6v/5

(S5)

The diagonal elements ¢, are the energies of the states |n) relative the ground state |0), whose
energy has been set to zero to simplify the discussion. Note that the low energy sector of
states |0), |1) and |2) are coupled only by A,, component of hexadecapole (h;), while the By,
component adds higher energy states, namely, B, and Byy.

We will show in the following that while A,, and B, order parameters alone can not ex-
plain the occurrence of the torque in the ab-plane (19, 46), the presence of both Ay, and By,
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fluctuations, and their condensation by a common order parameter Eq. S2, can explain both the
angular and temperature dependence of the torque experiment.

S4 The low energy two-states minimal model

In this section, we discuss the Raman scattering phenomena within the minimal model contain-
ing the lowest energy A,, and A, states in table S1, |0) and |1), and the order parameter is
considered purely real with Ay, symmetry.

S4.1 Raman susceptibility in Ay, channel and static magnetic susceptibil-
ity along c-axis

Resonant incoming photon energy, wy,, is required for coupling to A,, excitations (23, 26). The
Raman susceptibility in Ay, channel can be expressed by

@) 5 [ (O, (1O, (0 dr (56
where O 4,, is the Raman operator in the As, channel, which can be evaluated by

: . 0 0 9, 0
Oy Selon i3 [t [ aeeionite)(oon 6509 — gonte)poste) )
J

where ¢(r) are a complete set of one-particle functions.
The magnetic susceptibility along z-axis is

X2 (w) o / (J.(1)J.(0))e™dr (S8)
Here, J, can be approximated by the orbital angular momentum operator L.
L, x %:c;ck i/d?’rgb;(r) (Iaﬁy - y%)gbk(r) (S9)

Comparing Eq. S7 and S9, we see that Oy4,, and L. differ only in the structure of the
bare vertex in the brackets, which has the same symmetry properties. Therefore, we have the
following relations:

(0|04,,10) = (0].12|0) = 0

(1|04, |2) = (1] L2[2) = 0

(1|O4,,|0) = B(1]2.|0) = ia (S10)
<CB’OA2Q 0) = oA (CB|J.|0) = io

where «, (3, ' and 3’ are real numbers. We see that the matrix elements of O Aag and J, operators
are proportional to each other within the minimal model. This explains the proportionality
between x4, (0,7") and x;"(0, T) in Fig. 2B of the main text.
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S4.2 Effect of the magnetic field along c-axis in the HO phase

Consider just the Ay, part of the hexadecapole order parameter introduced in Sec. S3, we get
the 2 x 2 low energy sector of Eq. S4:

Hy | ]0) L)
0y 0 Vs (S11)
1) | Vsind  wy

where |0) = \%(\4} — ]f4>) with Ay, symmetry, and |1) = %(W + \—4))' — sin @ |0) with
Ay, symmetry, are the singlet crystal field states of the U-5f electrons. Notice that we have
absorbed the sin 6 factor into V' in the main text.

From perturbation theory, the perturbed states up to second order in V' are:
V2sin? 6 V sin 6
—7—) 10

5 )10+

—V sinf V?2sin? 6
=20+ (-

wWo 2wk

R) = (1 - 1) + O(V?)
(S12)

3) )|1) + 0V

Notice that V' can take up positive or negative values. In the following, we will use the notation:

V2sin? 0 |V|sin 6
- _l’_ JR S —

) = (1= ) )+ 0 gy o)

. . (S13)
L V2sin? 0 |V|sin 0 5
) = 1= ) o) - 0 gy o)

to distinguish the right- and left-handed states.

Following similar construction, but consider now the Hamiltonian in the presence of B-field
in z-direction (along c-axis), thatis H = Hy + V sinf + gupJ, B, where g is Landé g-factor,
(¢ 1s Bohr magneton, J, is the azimuthal angular momentum, and B is the field strength along
z. We can now write the Hamiltonian in the representation of crystal field states in our minimal
model:

H | 0) 1)
0) 0 Vsind — iy B (S14)
|1) | Vsinf +iyB wo

and hence the excitation energy in the presence of the field is

By, (B.V) = \Ju} + 4V2sin? 6 + (2B)? (S15)

Inserting states |0) and |1) in table S1 leads to v = 4cosfgup. The field dependence of
the same excitation observed by neutron scattering experiment is consistent with Eq. S15 with
2v =~ 0.114 meV/T, leading to cosf ~ 0.25 (29). Given that URu,Si, is in a mixed-valent
state, the numbers from such localized calculations should be regarded as semi-quantitative.
However, the symmetry considerations are general.
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S4.3 The Raman intensity of the A,, in-gap mode

From Eq. S12, we find that the transition amplitude between states |X) and |3J) in the Ay,
channel is:
VZsin? 0 VZsin?
E0a 1 = (1725 (1101, 10) - 5 000, 1) + 007

0 0
V2sin? 6
= (004,10 - 2 (08, 10) + 0104 1)) + 00
0
— (104,10 + O(V")

(S16)

Therefore, the intensity in the A,, channel to the lowest order in V' is

Lay, = [ (TOa, IR) [ = [(1|Oa,, 0) |* + O(V?) (S17)
Here we have used (0|0 4,,[0) = (1|O4,,|1) = 0 by symmetry selection rules, and (1|0 4,,|0) =
({(0]Oay,]1))* = ia from Eq. S10.

S4.4 The “leakage” intensity of the in-gap mode into the A, channel

From symmetry arguments, (1/O4,,[0) = (0|O4,,|1) = 0, where Oy, , is the Raman operator
for the A;, channel. From Eq. S12 we find that the transition amplitude between states |N\) and
|3) in the A;, channel is:

Vsind Vsind
(04, IR) = 22(0|04,,[0) — ——2 (1|04, |1) + O(V?)
Vsin®
_ im <<0|0A1g|o>—<1|0,41g11>)+0(V3) (S18)
0

Therefore, the intensity in the A, channel is

,  VZsin?4 2

L, =108, W P~ =2 (004,10) = (1j0., 1)) (s19)
We see that the intensity of the “leakage” into A;, channel is proportional to the square of the
order parameter, V2 sin® §. Here, the temperature dependence of the gap function shows that

the order parameter almost fully develops below ~ %THO (Fig. 20).
Moreover, in the resonant regime, required for coupling to the A,, excitations, the Raman
operators scatter photons via intermediate states (Fig. S4). Hence, the intensity of the “leakage”
mode critically depend on the laser excitation energy, wy, because of possible cancellation of

2
the term <<O|OA1g |0) — (1|OA1g|1>> . Similarly, the ratio of 1, /14,, will depend wy.
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S4.5 Beyond the minimal model

It is pointed out in Sec. S2 that another state with A, symmetry
sin

2) =

12) NG

is comparable to |1) in terms of energy. The Hamiltonian including this states and the A,, part

of the order parameter is:

(|4) 4+ |—4)) + cos 0 0) (S20)

Hy | |0) 1) 2)

|0) 0 Vsing —Vcosf

|1) | Vsiné Wo 0 (521)
|2) | =V cos? 0 €2

where ¢ is the energy of state |2). The perturbed HO eigenfunctions up to second order in V/
are:

VZsin?0  VZcos?d V sin 6 V cosf
Ny =(1- — — 1 2 3
W= (1- T - L) oy - Ll gy o L0y 4 oy
V sin 6 V2sin%6 sin 6 cos
= 0 1—-——— 11 20 =77 )2 3 S22
=) wWo | >+( 2w >| >+V(wo(€2—wo))| )+ OV (522
—V cosf o sinf cosf VZ2cos? 6
_ TV S0y Ly BOCOST gy L (g - LECOSON 3
9 €2 0=V (52(52 —wo)) L+ ( 2¢3 ) 21+ 007)

Since both states |1) and |2) are of A;, symmetry, one would expect two resonances in the A,
channel. However, we show in the following that only one resonance resulting from transition
IN) — |3) is expected.

From Eq. S22, the resonances in the Ay, channel are:

V2sin?0  V?cos?0 V2sin? 6
Ny = (1 _ 1 _yosm? 1
0w = (15 = 55 (1104, 10) - 5 010, 1)
sin  cos 6 sin @ cos 6 S23
+V? (m) (2|04,,[0) + VZW (004, [2) + O(VY) (523
= (1|0,,|0) + O(V?)
V2sin?0  V?cos?0 V2 cos? 0
Ry = (1 - 2 _Lreosl 2
@0a, 1) = (1= " = 50 2104, 10) - 5 0j0, 2
(S24)

10 cos 0 in @ cosf
v (SO0 1410, 10+ V2R 1010, 1)+ (v
£2(e2 — wp) Wo2

= (2|04,,10) + O(V?)

However, the second resonance, (1|0 4,,[R), is not allowed due to angular momentum conser-
vation. A two photon process such as Raman scattering can only promote states with A.J, =

13



0, +2h, where J, is the angular momentum of the states involved in the transition. In the limit
of § — 0, only transition |0) — |1) is allowed in the RR scattering geometry, where there is no
angular momentum transfer between the incident and scattered photon (Fig. S4). On the other
hand, the transition |0) — |2) requires A.J, = 4k and only enters in Raman scattering as
high order process. Therefore, we conclude that the resonance in Raman scattering As, channel
is resulted mainly from transition |0) — |1), and it is sufficient to introduce these two lowest
lying states to explain the Raman scattering data.

intermediate states
W
R-[ 0 [IR>
S=1, SZZI S=1, SZZI
A Energy R> >
IRR S=1,S =1 S=1,S=-1
€g BZg ﬁv |8> = %(|2> - |_2>)
B
g, e — |7> = %(|2> + |—2>)
& A, 12) ~ |0)
A l
g  —e ’1) ~ %(‘4) + |—4>)
0 A2g ———————————————————————————— |0> = ﬁ(|4> — |—4>)

Figure S4: Schematic drawing of the Raman selection rules due to angular momentum conser-
vation. The left hand side shows the energy and irreducible representations of Dy, group of the
crystal field states, and the right hand side shows these states in the two electron wave function
representation. Notice that |1) and |2) have been approximated by assuming small 6. The blue
(red) arrow denotes the direction of electronic transition due to incident (scattered) circularly
polarized light, where the dashed red line is forbidden due to violation of angular momentum
conservation.

The hexadecapole coupling operator is proportional to .J*, therefore in the limit of § — 0,
it will couple only the |0) and |2) states, and Raman scattering would not be able to see the
leakage in the A;, channel. However for small but non-zero 6, the transition amplitudes in the
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A4 channel consist of two transitions:

Q104,18 = 2 010,100 - L 10, 1)+ 01
i (S25)
V 0
= 20 ((0004,10) - (110, 1)) + O0)
-V 0 vV 0
(0., %) = === (0104,,[0) + === (2|04,,[2) + O(V)
—V cosf 3 (526)
-, (0]04,,|0) — (2|04,,]2) | +O(V7)

The two transitions have the same order of V, but different energy. The fact that we don’t see
the transition |X) — |J) is possibly because its energy is higher than the gap and therefore, it is
an over-damped excitation.

S4.6 Leakage intensity due to broken C'; symmetry

Recently, there have been reports on broken four-fold rotational symmetry observed by mag-
netic torque (/9) and X-ray diffraction (20). Such symmetry breaking lowers the group symme-
try from Cyj, to Cyy,. In the Cyy, group, RL is no longer a “proper” scattering geometry. Therefore,
it is expected to see a leakage intensity of the 1.6 meV mode into the RL geometry.

SS Magnetic torque in the ordered state with field in xy-plane

In the following, we explain that the four-fold rotational symmetry breaking observed in mag-
netic torque experiment can be full accounted for by the composite hexadecapole order param-
eter (Eq. S2).
Using perturbation theory, the ground state local wave function in the hexadecapole ordered
state is
IN) =10) ap — |1) a1 + |2) az + |7) a7 — |8) as (527)
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where coefficients up to the second order in V' are given by

1V2hE  1V2h2 1 V22
ag = - R — —
0 2 W 2 e 2 &

Vho

ay = ——
Wo

gy = Y1 (S28)
€2

S (hob4 by h2b5)
7 =
Woe7 E7E2 E7€8

_Vbs
-

ag

Notice that at small V, a; < ag < a2 < al. The minimal model introduced in Ref. (43)
contained only a( and @, and their coupling is only through the Ay, part of the order parameter
(constants h;). The By, part of the order parameter mixes in B, state at the first order (although
small because wy/eg < 1) and By, at the second order in V' (which is also small because
wo/e7 <K 1).

If the magnetic field B is in xy-plane (but not exactly along the x or y axis), the magnetization
M points in different direction than B, hence there is finite torque along z axis, 7 = M x B.
To compute the torque, we first evaluate the change of the hexadecapole wave function |X) due
to magnetic field perturbation in the xy-plane 0 Hp = —J,cosv — J,sin? (notice that the ¥
here is the magnetic field angle, different from the crystal field angle ¢ defined in Eq. S4). The
change takes the form

B B

[08) & ————[p"(9) [3) + p(9) |4)] = ———[P"(9) [5) + p(¥) [6)] (S29)
0 €3 €0 — €5
where
) = ccos pe?’ + d*e”V
p) = ceosoe T de (S30)
p(¥) = csinge” + d*e™
with
c = lag — aa; + aas
d = a7 +iagfl’
. , ~ (S31)
cC=1tag— a'a; + 'ag
CTE CL7B// + iagg
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We used the short-notation for constants determined by the crystal field angle ¢ and ¢:

o = cosf — V/5sin b tan ¢
o = cos 4+ V/5sin f cot ¢
& = sinf + v/5 cosf tan ¢
& = sinf — V5 cosf cot ¢
B = (V7cos ¢+ 3sing)/2
B = (V7cos ¢ — 3sin ¢) /2
ﬁ (V7sin ¢ + 3 cos @) /2

= (V/7sin¢ — 3cos ¢)/2

(S32)

and the constants determined by the crystal field level angle #: Here we neglected the change
of the energies of the F, states due to the hexadecapolar order, which can be neglected at this
order. While the energy of the A,, state |0) is lifted to o.

The magnetization is proportional to

Mo = (Ja) = ((R] + (OR]) Ja (IR) + |08))

N[ [N + ZRe((N] Jo [0R) + (9R] o [R) (533)

The first term vanishes. The linear in B contribution will come from the second term (X| .J,, [0R),
which will be computed below.

We notice that .J, |0) gives |1) states, while .J, |0) gives |E,) states, hence when magnetic
field points in z-direction, there is no magnetic moment in z-direction, and vice-versa. This
statement remains valid even in the ordered state. As a consequence, the torque in the first order
perturbation theory (53?2 term) can only be proportional to sin 219, when B field is swiped in the
xz-plane.

We also need J, and J, acting on the ground state, i.e.,

Je [R) = p(0)[3) +p(0) [4) +p7(0) [5) + p(0) [6) (S34)
Jy IR) = p*(n/2) [3) + p(7/2) |4) + p"(7/2) [5) p(x/2) |6)

We now compute M, /2 = (X| J, [0R) and M, /2 = (X] J, |0X), which are given by

4B Y 8B sin ¥
M, = i (] cos® ¢ + |d|* + 2 cos ¢ Re(cd) +) sin cos¢Im(ed)  (S35)
€3 — & €3~ ¢%o
4B cos ¥ ~ 8Bsiny s
+ﬂ <’“]2 sin ¢ + |0l\2 + 2sin ¢ Re(cd sin sin ¢ Im(cd)
€g — €5 — &0
4B 19 SB 9
M, = sin (c|* cos® ¢ + |d|* — 2 cos ¢ Re(c S2 Y os ¢Im(cd)  (S36)
€3 —¢€o €3 —¢o
4B sin _ 8Bcos¥ ~
2B in a2 — 25in 6 Re@d)) — S sin 6 ()
5 —E&Q €5 — €0



The torque 7, = B(M, sin — M, cos 1)) on a given site is therefore

7, = 8B2sin 20 (COSCbRe(Cd) n 51H¢Re(0d)>+832 cos 20 (cosgblm(cd) N sin ¢ Im(cd)

£3 — & 5 — & €3 —&o €5 —E&o
(837)
Next we work out the coefficients
Vb
Re(cd) = ——— 3
€8
hob hibs hob h1b hob
Im(cd):V2(—05ozﬁ’+ 15a6/+ 045_ 135_ 256)
Wo€s E2€g Wo €7 E7E2 E7€8
S (S38)
Re(cd) = —— 3
€8
Im(cd) = V? (— hobs v 4 Mbs iy Toba g Inba gy %5’)
WoEsg E2Eg Wo €7 E7E2 E7€8

We notice that Re(cd) is odd function of V. In the ordered phase, the two U atoms in the unit
cell have opposite value of V' and hence this term vanishes. The second term Im(cd) is even
function of V' and remains non-zero in the staggered hexadecapolar phase. We hence obtain the
torque of the form

8B2V? hob hob hib hib hsab
7. = cosw( Yy = Y — s — ”73) (S39)
€eg — €0 Wo €7 Wo€s E2Eg E7E2 E7€8
where 7’s are some real numbers of order unity
= (aﬂ’ cos (bgeg o, o' B sinqﬁgeg — 80)
E3 — €&p &5 —€o
y = (aﬁ’ cos -9 0 4 i sin =9 50) (S40)
€3 — &g €5 —¢€o

Eeg—E0 % . L Eeg—E
ysz(ﬁcosqb 90 | 3sin p—< o)

€3 —¢€o €5 —&o

and we choose ¢, = (3 + €5)/2.

This is the central result of this section and shows that the hexadecapolar order parameter
Eq. S2 can explain the cos(29) oscillation observed in the magnetic torque experiment (19). It
also explains the observed linear temperature dependence, because V' is the order parameter and
has a (1 — T'/7.)"/? dependence.

Notice that finite value of torque is a result of the interference term between Ay, and B,
part of the order parameter (;b; terms). If B, part vanishes, there is no torque. If B, is finite
but A,, vanishes, Re(cd) is nonzero, but since it is proportional to V/, it vanishes when staggered
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phase is considered. It is therefore crucial to consider such composite order parameter, which
contains primary Ay, part, and subleading B, part.
The perturbation theory to higher order gives torque per site to be

7, o< ¢; B*(1 — ¢oV?) sin 49 + ¢y B*V cos 49). (S41)

The second term is odd in V, and hence cancels in the staggered phase, and we are left with the
49-oscillations of torque of the form

7, o< B*1 — ¢oV?) sin 49 (S42)

as seen in the magnetic torque experiment in the ordered state (/9).
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