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Preface

Raman spectroscopy is an inelastic light scattering technique, where a monochro-
matic light source, typically a laser, is used to exchange energy with the system
and thus perturbs the material under study into an excited state. In this process,
the energy quanta that the electromagnetic field lose to or gain from the system
correspond to specific energy levels that are characteristic to the material, such as
lattice vibration modes, aka phonons. That is, each peak in the energy spectrum of
the scattered light corresponds to a specific collective excitation of normal modes in
the system. Therefore, we gain insights into the material properties by studying the
energy spectrum of the scattered light, which is called a Raman spectrum to honor
the main discoverer of this effect, Sir C.V. Raman.

One of the most powerful advantages of Raman scattering is that the energy
spectra are independent of the incident light energy and only reflect the spectra of the
system’s excited states. Therefore, experimentalists can pick the excitation energy
that maximizes the Raman signal of interest. This effect is also known as resonant
Raman scattering, which is done by exciting electrons into an unoccupied band and
thus creating an electron–hole pair in the system. There is finite probability that the
electron–hole pair decay into an excited state instead of the ground state by emitting
a slightly less energetic photon. Another unique property of Raman scattering is its
symmetry sensitivity. By using polarized light, one can selectively probe part of the
Raman tensor, which in turn reflects collective excitations with a specific symmetry.

My thesis research focuses on using low temperature polarization resolved
Raman spectroscopy to identify optically excited collective modes in strongly
correlated electron systems and three-dimensional (3D) topological insulators.
In particular, we are interested in collective modes present in the pseudovector
symmetry channel, such as the A2g representation of D4h group. Although generally
forbidden for phononic excitations, it was noted by early workers of the field
that contribution from antisymmetric tensors (A2(g) irreducible representation) may
arise under special circumstances. Historically, the excitations in the antisymmetric
channel have been referred to as the “chiral excitations” due to their intimate
relationship with the spin chiral operator. For example, antisymmetric scattering
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viii Preface

was predicted for Dirac spin-liquid state in the spin-1/2 kagome system but yet
unobserved to date.

Here in this monograph, we discovered two examples of electronic excitations
arising from the antisymmetric “chiral” channel. More precisely, we observe
sharp A2(g) collective modes in two entirely different nonmagnetic systems: heavy
fermion metal URu2Si2 and 3D topological insulator Bi2Se3. Observation of an
antisymmetric collective mode in nonmagnetic systems is highly unusual and rare,
and the mechanism is different for different cases. This monograph is dedicated to
explore the properties, mechanisms, and physical implications from these two new
systems. Due to the recently rising interests on the chiralities in condensed matter
physics, we hope that this dissertation will intrigue new insights into the possibility
of probing chiral excitations with optical methods.

Vancouver, BC, Canada Hsiang-Hsi Kung
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Chapter 1
Introduction

Abstract Polarization resolved Raman spectroscopy is a powerful tool as it
simultaneously offers exceptional symmetry and energetic resolution (∼0.1 meV),
making it particularly suitable for studying low energy collective modes in systems
with nontrivial electron correlation. In the condensed matter physics, Raman spec-
troscopy has been crucial in understanding superconductivity by studying symmetry
of the Cooper pair breaking peak, electron–phonon interaction in semiconductors
by studying the plasmon–polaritons, and charge density waves by studying the
amplitude modes.

In this chapter, I will first introduce the generic theory of polarization resolved
Raman spectroscopy in solids. Focus will be given to electronic Raman scattering,
where light scatters with the electronic quantum mechanical states. Minimal group
theory will be used to justify the symmetry analysis of polarization resolved Raman
scattering data. Then, I will discuss how Raman scattering can be used to probe
the “chiral excitations,” i.e., collective excitations out of a chiral ground state, by
measuring inelastic light scattering in the pseudovector-like antisymmetry channel.

1.1 The Scope of This Thesis

In this thesis, we will focus on using low temperature Raman spectroscopy to
identify optically excited collective modes in strongly correlated electron systems
and three-dimensional (3D) topological insulators. In particular, we are interested
in collective modes presenting in the pseudovector-like symmetry channel, e.g., the
A2g representation of D4h group, which is antisymmetric with respect to in-plane
reflections. Previously, such excitations are primarily seen in magnetic materials
where the time reversal symmetry is broken [1]. Here, we present two examples
where A2g collective modes arise from time reversal symmetry preserved ground
states.
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In the first example, we study a heavy fermion metal URu2−xFexSi2, which
holds long standing interest in the strongly correlated electron community due to
an emergent long range order it exhibits at low temperature and x < 0.1, known as
the “hidden order” (HO). By studying the temperature dependent Raman response
function in all allowed symmetry channels for various iron concentrations x, we
found evidences of broken symmetries and a possible order parameter that explains
the low temperature phase diagram. In the low Fe concentration HO phase, we
observed a sharp in gap mode with A2g symmetry and small leakage into the A1g

symmetry. Our results show strong indication of the local reflection symmetries
broken at the uranium site in the HO phase [2]. As we increase x, the energy of an
A2g collective mode decreases to almost zero at the phase boundary and recovers
in a well-known antiferromagnetic (AFM) phase. This is a direct evidence that both
HO and AFM phases are related to an A2g type order parameter, which arranges
the uranium-5f orbitals into orders breaking either local chirality or time reversal
symmetry [3].

In the second example, we study a 3D topological insulator Bi2Se3, which
has a rhombohedral lattice with the D3d point group symmetry. At the crystal
surface characterized by the C6v point group, strong spin orbit coupling and
time reversal symmetry conspire to form topologically protect Dirac states with
chiral spin texture. While the existence and spin texture of the surface states
are mostly understood for Bi2Se3 through photoemission and scanning tunneling
spectroscopies, very few examples of collective excitations from the Dirac surface
states have so far been identified, and therefore interactions between the Dirac
particles are yet unclear. In our study, we tune the excitation energy into resonance
between two surface bands to enhance the signal contributed by the Dirac electrons.
As photon energy tuned to 1.8 eV, we observed a sharp collective mode with
energy of about 150 meV appearing below the edge of a gapped continuum, in
the pseudovector-like A2 symmetry of the C6v group. By comparing the data with
calculations, we identify this peak as the transverse collective spin mode of surface
Dirac fermions: a collective spin–flip excitation from the lower to upper Dirac
cone [4]. The chiral properties of the surface states could be further explored by
measuring the photoluminescence (PL) spectra. With the excitation photon energy
tuned to around 2.7 eV, we observe the appearance of a PL peak centered at
2.26 eV, where the intensity is almost perfectly circularly polarized. By comparing
the excitation profile with band structure calculations, we identify this PL peak
as 2D excitonic bound states composed of surface massless electrons and surface
massive holes, both subject to strong spin–orbit coupling which locks their spins
and momenta into chiral textures. Due to the chiral structure, the surface excitons
emit circularly polarized PL that preserves the angular momenta of the incident light
[5]. These are new and direct optical measurements of the dynamical response from
the 2D Dirac fermions in topological materials. Both the spin mode and the chiral
exciton survive even at room temperature with decreased intensity, which is likely
due to the more available decay channels through interacting with surface phonons
[6]. The robustness of the chiral collective modes suggests potential applications in
room temperature magnonics and optoelectronic devices.
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1.1.1 Brief History

We will start with a brief detour on the history of discovery of inelastic light
scattering. Newtonian optics (geometrical optics) states that light always travels in
a straight line in empty space and can only be perceived by eyes when directly
pointed at from the source. However, interaction with medium can deviate light
from its optical path, which is often referred to as diffusion of light. We know
by now that the diffusion of light is nothing more than the electromagnetic wave
interacting with microparticles in the medium, which behave as tiny oscillating
dipoles under the influence of the external field. Thus according to Maxwell’s theory
of electromagnetism, the scattered light can be deflected into any direction away
from the optical path. Depending on whether or not the scattered light maintains
the same wavelength as the incident light λI , the scattering process can be further
separated into elastic and inelastic scatterings.

The elastic scattering of light from dilute particles where λI is much smaller
than average particle separation has been known to scientists for a long time.
However, systematic study was not done until the late nineteenth century by Tyndall.
Depending on the nature of the scatterers, the elastic scattering from dilute medium
can be further separated into two main categories: when the scatterers have diameter
comparable or larger than the light wavelength, they are referred to as Tyndall effect,
such as in suspending colloidal liquid; otherwise, they are generally referred to as
Rayleigh effect, such as scattering from air molecules. Notice that all of the above
treatments on light scattering assume each microparticle as harmonic oscillator, with
the dipole moment of each particle, oscillates at the same frequency of the incident
light, ωI = 2πc/λI . Thus the particles always radiate with the same wavelength as
the incident light.

The scattering of light by dense medium, such as fluids, requires a different
explanation. Since the particle separation is small compared to λI , there exists
coherence between light scattered by different particles, which can no longer be
assumed as independent dipolar emitters in Rayleigh’s treatments. A straightforward
summation over N identical particles leads to destructive interference in every direc-
tion except along the forward light path [7], which is obviously inconsistent with
our everyday experience of light penetrating water. For example, one can clearly
see sunlight beams underwater in a swimming pool, where the light propagation is
orthogonal to the observer’s viewing direction. This cannot be attributed simply to
impurities or dust in the solution, since the elastic line is always present even at large
angles to the optical path, and in the purest solutions [8]. It was later pointed out
by Landau and Placzek in 1934 that light scattering from local pressure (density)
and entropy (temperature) fluctuations will avoid total cancellation of intensity in
destructive interference and leads to nonzero intensity for the elastic scattering
component away from the optical path [7, 9]. Note that this unshifted component
is usually referred to as the “Rayleigh line” in literatures, but its origin is actually
quite different from the Rayleigh effect that is causing the blue sky. More detailed
discussion can be found in chapter 8 of Ref. [7].
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Progress in understanding the inelastic scattering spectra is first made by
Brillouin in 1922, who predicted that light interaction with propagating pressure
(density) fluctuation in liquid or solids due to sound waves can lead to modification
of scattered light wavelength [10]. Using the newly accepted quantum theory of
lattice vibrations by Debye, i.e., phonons [11], Brillouin predicted two inelastic
peaks displaced symmetrically on both sides of the elastic Rayleigh line, with energy
separations related to the sound speed of the medium. The experimental observation
was first reported for scattering of light by various pure and transparent liquids in
1930 [8], and the effect was since dubbed Brillouin scattering.

Shortly after Brillouin’s thesis, Smekal predicted in 1923 that scattering of light
by a two-level system will lead to oscillatory change of the medium’s polarizability
that causes inelastic sidebands in the spectra of scattered light [12]. The frequency
shift of the sidebands from the excitation light frequency will be exactly the
“quanta” of the two-level energy difference divided by Plank’s constant. A few
years later, Kramers and Heisenberg developed a quantum mechanical version of
Smekal’s theory using the “correspondence principle,” describing inelastic light
scattering of atoms [13]. The complete quantum mechanical treatment of light will
be given by Paul Dirac two years later [14, 15], and thus the Raman scattering from
a simple system is predicted and well understood.

Around the same time of Smekal’s prediction, Raman and coworkers in Calcutta,
India were studying the light transmission through water, because they do not
believe that the “blueness” of the sea is due to reflection of the sky [16]. In the
process of their study, they discovered sharp inelastic lines in the scattering spectra
of several transparent organic liquids and distilled water. Raman spent the next few
years studying this phenomenon and realized that not only the radiation is highly
polarized, but also the energy shifts of some new lines are the same as the known
absorption lines in infrared spectra. In 1928, Raman finally made the announcement
that this is the discovery of a new type of “secondary radiation,” where “the incident
quantum of radiation is partially absorbed by the molecule and that the unabsorbed
part is scattered” [17, 18]. Raman’s discovery was repeated in quartz and several
other materials later that year by R.J. Wood with an improved setup [19].

Raman was soon awarded Nobel prize in 1930 due to the discovery of the new
type of light scattering now named after him. However, little is known that around
the same time in Moscow, Landsberg and Mandelstam also reported similar effect in
quartz [20], and it was correctly interpreted as the inelastic light scattering predicted
by Smekal in 1923. Detailed historical account of the discovery in Moscow is given
in Ref. [21].

The greatest triumph and significance for the discovery of Raman effect were
perhaps due to its successful applications in studying of very low energy excitations
in materials. These “ultra red” excitations would otherwise be very difficult to
investigate experimentally by absorption spectroscopy due to its long wavelength.
Raman effect translates the wavelength of these excitations into the visible range,
or any other wavelength convenient to the material and experimental setup, by
choosing an appropriate incident light energy. Also, in molecules or crystals with
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inversion symmetry, some of the vibration normal modes are forbidden by symmetry
in infrared absorption, which could be observed in Raman scattering.

Another interesting implication of Raman scattering is in the development
of quantum theory. By 1913, the great success of early quantum mechanics in
explaining blackbody radiation, heat capacity, and the emission/absorption spectra
of simple atoms has left very little doubt on the validity of quantizing energy
levels in matters. However, this only deals with the emission and absorption
of light by materials, and nothing to do with the nature of the light itself.
Therefore, the quantization of the electromagnetic field proposed by Einstein in
1905 remains a debated issue for many years [22]. In 1916, Millikan finally,
rather unwillingly, admitted that his experimental data of photoelectric effect is
fully consistent with Einstein’s theory [22], which would imply that the energy of
electromagnetic wave is quantized with a quanta proportional to its frequency, i.e.,
h̄ω. In 1923, the observation of wavelength change in X-ray scattering by electrons
in vacuum (Compton effect) finally convinced most people the quantum description
of electromagnetic waves [23]. However, both experiments were done with high
energy photon (extreme UV to hard X-ray), leaving the generality of the “particle
description” of light at question. The Raman effect on the other hand is an extremely
general and direct demonstration to the quantum nature of electromagnetic waves.
As Robert W. Wood aptly commented on the Raman effect in 1928, “it appears to
me that this very beautiful discovery, which resulted from Raman’s long and patient
study of phenomena of light scattering, is one of the most convincing proofs of the
quantum theory of light which we have at the present time” [19].

1.2 Inelastic Light Scattering

We discussed in the previous section that Raman scattering is a type of “secondary
radiation” [17], i.e., the emission of electromagnetic waves from matters exposed to
an external field—the primary radiation—which could be either a beam of particles
or electromagnetic waves. If the primary radiation is photon, then there are generally
speaking two types of photonic secondary radiation that are observed in solids,
i.e., the luminescence and light scattering. While most of the photons are scattered
elastically in the light–matter interaction, there is a small fraction of scattered
photon having a different energy than the absorbed. The photon is said to scatter
inelastically with the system, i.e., either loses or gains energy through creating or
absorbing a quanta of collective excitation, respectively. This inelastic process is
coined the Raman effect, where the energy difference is known as the Raman shift.
Traditionally, the Raman shift is often given in the unit of wavenumber (cm−1)
or frequency (THz), where 1 THz=33.356 cm−1. The wavenumber is a convenient
energy scale, comparable to the thermal fluctuations (1 kB = 0.695 cm−1/K) and the
Zeeman energy (1 μB=0.4668 cm−1/T), but almost an order of magnitude smaller
than the most commonly used milli-electron volt (1 meV=8.065 cm−1).



6 1 Introduction

Fig. 1.1 Illustration for the
Stokes process, where the
incident laser energy is ωL,
and the excited state energy is
ω

In order to further distinguish inelastic light scattering from the luminescence,
we have to look into the processes of the secondary radiation. In the following,
we introduce the 3-step model of secondary radiation typically used to explain
the Raman effect [24], also illustrated in Fig. 1.1. First, the incident (primary)
photon is absorbed by the material to promote an interband transition into an
“intermediate state,” which specifies an electron–hole (e–h) pair with the electron
in a state of the conduction band and the hole in a state of the valence band. Note
that the perturbation theory in quantum mechanics does not require the incident
or scattered photon energy to match any of the intermediate state energies in
order to acquire nonzero transition probability. If the photon energies are far away
from any of the intermediate states, then the transition is said to be virtual. This
“nonresonant” case is the simplest form of Raman scattering generally discussed
in most textbooks and literature [7, 25]. Immediately after the optical absorption
and before the band thermalization is fully established, i.e., redistributing electron
populations throughout k-space to reach the Fermi–Dirac distribution with a new
effective electronic temperature, the e–h pair exchanges energy with the system
through inelastic processes such as creating/absorbing phonons, magnons, or other
lower energy e–h pairs. Lastly, the e–h pair recombines to emit a “scattered” photon
with different energy. Note that these 3 steps can occur in any time orderings.

The differentiation between Raman scattering and luminescence happens in
the second step. Generally speaking, if the phase relation of the emitted photons
to the absorbed ones is not simply determined by the emission/absorption of
collective modes, i.e., the phonons, magnons, plasmons, etc., but containing other
unspecified inelastic processes, then we can separate the secondary radiation into
two parts. The essentially instantaneous coherent scattering of the e–h pair with
elementary excitations is referred to as Raman scattering, and the incoherent
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processes are known as the hot luminescence [26]. These two processes are in
principle inseparable if the photon energy matches the intermediate states, i.e., the
resonant condition. In some cases, due to the different relaxation processes involved,
hot luminescence can still be distinguished from resonant Raman scattering by time
resolved experiments [26]. Such differentiation is not present for nonresonant case,
where no luminescence is expected as all processes occur virtually and no phase
decoherence happens. In reality for most common materials, due to the complexity
and broadening of the electronic bands, the visible light excitation almost always
falls in the near resonance regime, where both nonresonant and resonant Raman
scattering, as well as photoluminescence, contribute to the spectra. Therefore, one
has to examine the excitation profile and polarization dependence to distinguish
these different contributions and to gain understanding of the intermediate states
involved in the secondary radiation [27, 28], as we will discuss in more detail in
Chap. 4.

It is worth noting that the electron and hole will eventually thermalize indepen-
dently with the system to regain the Fermi–Dirac distribution, and if momentum
conservation allows, the electron and hole may recombine by emitting a less
energetic photon, i.e. (cold) photoluminescence. Depending on the band structure,
the photoluminescence can sometimes have much longer wavelength than the
incident photon. In most metals, the thermalization process is fast (� 1 ps), and
the cold luminescence is generally very broad and featureless in energy. In the
typical interesting energy range of Raman scattering, i.e., about 100 meV, cold
photoluminescence is a weak almost constant and unpolarized background that can
be subtracted from the measured intensity. Due to unscreened Coulomb interaction
in insulators and semiconductors, the electron-hole pair often thermalizes to form
an exciton with well-defined energy levels [29], which decay back to the ground
state by radiating photoluminescence sharply center around the dipole allowed
transitions. In this case, the decay time is dominated by the exciton lifetime, which
can be as long as nanoseconds and results in very sharp features in the luminescent
spectra.

For historical reasons, inelastic light scattering spectra obtained using a Fabry–
Pérot interferometer are generally referred to as Brillouin scattering, whereas
spectra recorded with grating spectrometers are called Raman scattering. In the
rest of this chapter, we will focus on the basic theory of Raman scattering. We
will assume that the incident and scattered photon energies are much larger than
the Raman shift, but small enough such that the photon momentum is negligible
compared to the electronic Brillouin zone.

1.2.1 Theory of Raman Scattering

Depending on the emitted photon energy in an inelastic scattering process, the
final state of the system could attain either higher or lower energy than the initial
state, known as the Stokes and anti-Stokes processes, respectively. That is, the
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scattered photon frequency in a Stokes process is ωs = ωI − ω, where ωI is the
frequency of the incident photon, and ω is the Raman shift [Fig. 1.1]. In the anti-
Stokes process, the scattered photon frequency is then ωas = ωI + ω. In principle,
the quasi momenta should also be conserved during scattering, i.e., ks = kI − q
for the Stokes process and kas = kI + q for the anti-Stokes process, where q is
the momentum transfer from the photon. However, the photon typically employed
in Raman spectroscopy has wavelength of about 0.4–1 μm, which is about 1000
times larger than the lattice parameters of most crystals. Therefore, the photon
momentum is about 1000 times smaller than the reciprocal lattice vectors, and thus
the momentum transfer between incident and scattered photon, q, can be taken as
zero for all practical considerations. In other words, Raman scattering only probes
collective modes near the Brillouin zone center.

The experimental observable in scattering experiments is called “differential
scattering cross section” (or spectral differential scattering cross section):

d2σ

d�dωs

= scattered particle f lux

incident particle f lux
; (1.1)

note that � is the solid angle of the collection cone inside the sample. Physically,
the differential scattering cross section measures the rate energy transfer from the
incident beam into a scattered beam within energy range of dωs and detected within
the solid angle d�, through (Stokes) scattering with a medium. Therefore, we need

to do a conversion from the calculated energy flux per unit area, d2Is

d�dωs

1
II

, into the
particle flux that we measure [7].

d2σ

d�dωs

= ωIA

ωs

d2Is

d�dωs

1

II

, (1.2)

where A is the effective scattering area. For light scattering experiments, the photon
energy flux is given by the magnitude of Poynting vector [7].

d2Is

d�dωs

1

II

= ω4
s V Lns

8π2ε0c3
|εs · Ps |2 1

2ε0cnI |EI |2 , (1.3)

where V is the sample volume and EI is the incident field amplitude, both will
eventually cancel with the “power spectrum” |εs · Ps |2. Ps is the light induced
polarization in the sample, Ps = ε0χ · εIEI , where χ is the dynamical charge
susceptibility tensor, and εs and εI are directional vector for scattered and incident
light, respectively. nI and ns are the refractive index of the sample at the wavelength
of incident and scattered light, respectively. c is speed of light, and L is effective
penetration depth of light. Therefore, the scattering cross section can be simplified
as

d2σ

d�dωs

= ωIω
3
s vns

(4πε0)2c4 V |εs · χ · εI |2, (1.4)
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where v = AL is the effective scattering volume. In reality, the evaluation of
susceptibility should be taken as thermal dynamic average of all finite energy states,

|εs · χ · εI |2 → 〈|εs · χ · εI |2〉 ≡ 1

V

∑

f

| 〈f |εs · χ · εI |i〉 |2, (1.5)

with |i〉 and |f 〉 the initial and final states, respectively.
In principle, all of the physics in the scattering event are encrypted in the last term

of Eq. (1.4). Namely, the inelastic light scattering probes the dynamical fluctuations
of the charge susceptibility due to the perturbation of the incident photon field. The
fluctuation could be due to its coupling to lattice vibrations (phonons) [30] or to
magnetic excitations [31]. Equation (1.4) is often referred to as the macroscopic
theory of light scattering. In general, this is not very useful for ab initio calculation
of the Raman scattering cross section in crystals, which requires a microscopic
theory.

Microscopic calculation of the scattering cross section is based on time depen-
dent perturbation theory (the “Fermi’s Golden Rules”) [14] and the “minimal
coupling” (excluding electron spin) Hamiltonian of electromagnetic (EM) field to
the electrons,

H = H0 + Hint = (p + eA)2

2m
= p2

2m
+ e2

2m
A · A + e

m
p · A, (1.6)

where the first term H0 describes the kinetic motion of the electron in the medium,
and the second and third terms are the interaction Hamiltonian Hint that governs
the coupling between the electron and EM field. Here we have used the Coulomb
gauge, ∇ · A = 0, to simplify the equation. Proper microscopic treatment requires
rewriting Hint with the vector potential in the quantum operator form [7, 30]. The
annihilation and creation operators for a photon with energy ωk , wave vector k, and
polarization εk are

A(r) =
∑

k

√
h̄

2ε0n2V ωk

[ake
ik·r + a†

ke
−ik·r]εk. (1.7)

Plugging into Eq. (1.6) and omitting nonlinear terms, the second term becomes [32]

HAA = e2

2m

∑

k,k′

(
h̄

2ε0nknk′V
√

ωkωk′

)[
aka

†
k′ei(k−k′)·r + a†

kak′e−i(k−k′)·r] (εk·εk′).

(1.8)
To calculate the contributions of Eq. (1.6) in the inelastic light scattering, we

need to use the time dependent perturbation theory [14], or more precisely, Fermi’s
Golden Rule for transition rate between initial state |i〉 and final state |f 〉,
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	if = 2π
∑

i,f

pi |T |2δ(ωI − (ωs + ωif )), (1.9)

where ωif ≡ (Ef − Ei)/h̄ is the excitation frequency, commonly called Raman
shift, and we will simply denote it as ω in the following. pi = exp(−βEi) is the
probability of being in the initial state, and T is the matrix element that encodes
all of the information about interactions between the scattering medium and light.
The spectral cross section is proportional to the transition rate by scattered photon

density of states per unit solid angle, V
(2π)3

∫
d3ks = V

8π3
n3

s ω
2
s

c3 , and then normalize
to the incident photon flux. We will drop the prefactors in the following since they
are not relevant to this experimental thesis study, and rigorous derivations exist in
many books and reviews [7, 27, 30].

The scattering matrix element T can be evaluated perturbatively assuming the
interaction Hamiltonian Hint is weak compared to H0,

T = 〈f |Hint |i〉 +
∑

m

〈f |Hint |m〉 〈m|Hint |i〉
h̄(ωi − ωm)

+
∑

m,m′

〈f |Hint |m〉 〈m|Hint |m′〉 〈m′|Hint |i〉
h̄2(ωi − ωm)(ωi − ωm′)

+ O(H 4
int ). (1.10)

Inserting HAA term of Eq. (1.6) into Eq. (1.10) and keeping only the leading
order, the matrix element for scattering with a collection of particles is

T ∼ 〈f |
∑

j

eiq·rj |i〉 (εI · εs), (1.11)

where q = kI − ks is the momentum transfer. In typical Raman scattering
experiments, the used wavelength of light is much larger than the lattice parameters,
i.e., q ≈ 0 compared to the Brillouin zone size, and therefore the exponential
term is the order of unity (dipole approximation). Thus, in scattering by electronic
transitions, the matrix element is only appreciable with the same initial and final
states while conserving the momentum, i.e., the intraband transitions. In fact, it can
be shown that the cross section of this term is equivalent to the single band electron
density–density correlation function close to the Brillouin zone center (at q ≈ 0),
measuring excitations of conduction electrons and plasmons in crystals [7, 32]. This
is why Raman scattering from electrons is often referred to as probing the charge
density fluctuation. Following the same argument, Raman response vanishes at zero
energy, because there is no charge “fluctuation” in the static limit. Note that HAA

does not contribute to the “crossed polarization” scatterings due to the term (εI · εs)

and therefore will never contribute to the antisymmetric symmetry channels, e.g.,
A2g in D4h group.
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The third term in Eq. (1.6) can be written as

HPA = e

m

∑

k

√
h̄

2ε0n
2
kV ωk

[ake
ik·r + a†

ke
−ik·r](p · εk). (1.12)

This term obviously does not conserve photon number and thus requires second
order perturbation in Eq. (1.10) as an elastic light scattering process. The matrix
element then reads

T ∼
∑

m

[ 〈f |∑j (pj · εs)e
−iks ·rj |m〉 〈m|∑j (pj · εI )e

ikI ·rj |i〉
ωi − ωm + ωI

+ 〈f |∑j (pj · εI )e
ikI ·rj |m〉 〈m|∑j (pj · εs)e

−iks ·rj |i〉
ωi − ωm − ωs

]
.

(1.13)

Note that the matrix element now contains electronic momenta and thus allows
scattering between different electronic states, i.e., interband transitions [Fig. 1.2b].
Moreover, the incident and scattered photon polarizations need not be parallel as in
the HAA term. Therefore, the HPA term is more significant for almost all collective
excitations in crystals [7].

We can further draw relation between the experiment (Raman cross section) and
the theory (matrix element) by rewriting the T-matrix into correlation functions.
Define the single particle states, |α〉, |α′〉, |β〉, and |β ′〉, and the manybody creation
operator c†

α . We can combine and rewrite the T-matrices from HAA and HPA [33],

Fig. 1.2 Illustrations of
(a) intraband and
(b) interband transitions
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T ∼ (εI · εs)
∑

α,β

ρα,β(q) 〈f |c†
αcβ |i〉

+ 1

me

∑

m

∑

α,α′,β,β ′
pα,α′(qs)pβ,β ′(qI )

×
[ 〈f |c†

αcα′ |m〉 〈m|c†
βcβ ′ |i〉

ωi − ωm + ωI

+ 〈f |c†
βcβ ′ |m〉 〈m|c†

αcα′ |i〉
ωi − ωm − ωs

]
,

(1.14)

where ρα,β(q) = 〈α|eiq·r|β〉 is the electron density matrix element, and
pα,α′(qI,s) = 〈α|p · εI,se

±iqI,s ·r|α′〉 is the momentum matrix element.
Shastry and Shraiman further argued that if we only consider correlation effects

for the electronic bands with energy comparable to the photon energies, ωI and ωs ,
which are typically around 2 eV, then the interaction Hamiltonian can be rewritten
as

Hint = e2

2h̄2c2

∑

αβ

AαγαβAβ + e

h̄c
j · A, (1.15)

where γαβ(q) = ∑
k

∂E(k)
∂kα∂kβ

c†(k + q/2)c(k − q/2) is usually called Maxwell’s

stress tensor, relating the energy to vector potential, and jα(q) = ∑k
∂E(k)
∂kα

c†(k +
q/2)c(k−q/2) is the current operator. Then, the T-matrix can be further generalized
to strongly correlated materials [33–35],

T ∼
∑

αβ

εα
I ε

β
s

×
[
〈f |γα,β(q)|i〉+

∑

m

( 〈f |jβ(qs)|m〉 〈m|jα(qI )|i〉
ωi − ωm − ωI

+〈f |jα(qI )|m〉 〈m|jβ(qs )|i〉
ωi − ωm + ωs

)]
.

(1.16)

Due to the overall complexity of the problem, Eq. (1.16) needs to be simplified
based on specific systems under study before any practical calculation and therefore
exceeds the scope of this thesis. These problems are nicely discussed in Refs. [33,
34, 36–38] for several systems.

The scattering rate calculated from Fermi’s Golden Rule in Eq. (1.9) is further
related to the autocorrelation function of “effective charge density” operator, ρ(x, t)

S(ω, q) = h̄r2
0
ωs

ωI

	if ∼
∑

k,k′

∫ ∞

−∞
〈c†

k(t)ck+q(t)c
†
k′+q(0)ck′(0)〉 eiωtdt, (1.17)
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which is often referred to as the dynamical electron “effective density–density”
correlation function [33]. The fluctuation–dissipation theorem further relates the
measured fluctuation (correlation function) to the dissipation of the system (linear
response function). The cross section of the Stokes process at zero temperature
is simply proportional to the imaginary part of the linear response function
(dissipation), χ ′′(ω, q), where ω is the photon energy transfer and q is the
momentum transfer. That is, the Stokes intensity will be entirely determined by the
spontaneous scattering due to quantum fluctuations. Notice that this term is purely
quantum mechanical and is irrelevant to the details of the response function under
consideration [39].

At finite temperature, the thermal fluctuation will result in an additional term in
the correlation function, leading to the stimulated scattering. This term is related
to the nature of the perturbation, and for Raman scattering, it is determined by
the Bose–Einstein factor, n(ω, T ) = 1/(exp[ h̄ω

kBT
] − 1). Thus the cross section for

the Stokes process in Raman scattering is related to the Raman response function
χ ′′(ω, q) by

d2σ

d�dω
∼ S(ω, q) = [1 + n(ω, T )]χ ′′(ω, q). (1.18)

The details of optical corrections for converting this cross section into the scattering
intensity measured by the spectrometer outside the sample will be given in the next
chapter, Sect. 2.2.3.

For materials without long range ordered magnetism, the scattering cross section
for the Stokes and anti-Stokes processes is related by the principle of detailed
balance [7]:

(d2σ/d�dω)AS

(d2σ/d�dω)S
∼ n(ω, T )

1 + n(ω, T )
= exp

[−h̄ω

kBT

]
, (1.19)

assuming that the energy shift is much less than the incident laser frequency, ω �
ωL. Therefore, by measuring the ratio of scattering cross section for the Stokes and
anti-Stokes processes, we can in principle determine the sample temperature and
thus estimate the effect of laser heating.

1.2.2 Nonresonant Raman Scattering

As we discussed earlier in the beginning of this section, if both the incident and
scattered photon energies are much smaller than the intermediate state energy,
ωI,s � |ωi −ωm|, then the scattering is called “non-resonant,” and the intermediate
states are called “virtual states.” If we further limit to intraband transitions in weakly
interacting systems [Fig. 1.2a], then the Raman cross section can be simplified to the
following form [33]:
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d2σ

dωd�
∼ |εI · M−1 · εs |2

∑

k,k′

∫ ∞

−∞
〈c†

k(t)ck+q(t)c
†
k′+q(0)ck′(0)〉 eiωtdt, (1.20)

where M−1 is called the inverse “effective mass tensor” [40],

M−1 ≡ ∂2E(k)

∂kα∂kβ

= 1

me

δαβ + 1

m2
e

∑

m

( 〈i|pβ |m〉 〈m|pα|i〉 + 〈i|pα|m〉 〈m|pβ |i〉
ωi − ωm

)
.

(1.21)
This is known as the “effective mass” approximation. This is very useful in metals
or large band gap insulators, where the conduction band width or band gap is
commonly over 3 eV, such that no real interband transitions need to be considered
when visible light is used. Within the approximation, by utilizing the symmetry
properties of the Raman cross section that we will discuss later, one can even
relate symmetry resolved Raman response function to different parts of the Fermi
surface [33]. In most metallic materials, unless there exists a singularity in the
joint density of states for vertical transitions of visible wavelength, the effective
mass approximation is always a good starting point for understanding the Raman
scattering spectra.

Up to this point, the Raman scattering cross section has been discussed quite
generally without restricted to any specific systems. In the following, we will
briefly discuss the most common situations for Raman scattering in solids, i.e., light
scattering with lattice vibrations.

1.2.3 Raman Scattering of Phonon

The theory of inelastic light scattering by molecule or lattice vibrations is first
developed by Placzek [30], who realized that the vibration of atoms around
its equilibrium position creates a time dependent electric polarization, like an
oscillating dipole, which as we known leads to emission of electromagnetic waves.
In solids, the dominant Raman scattering process is always the one in which the
photons interact indirectly with the phonons via the electrons [25]. The photon field
interacts with the “deformation potential” induced by the lattice vibrations and thus
the energy shift by the phonon energies.

Microscopically, the lattice vibrations modify the dynamical electric susceptibil-
ity of the crystal, χ(u, t) [41]. Note that this is usually called polarizability, α(u, t),
for molecule vibrations. Expanding the susceptibility around the equilibrium posi-
tion of nuclei in the normal coordinates,

χ(u, t) = χ(0) + (u(t) · ∇)χ(u, t)|u=u(0) + O(u2), (1.22)

where u(t) = u0e
−iωt + u∗

0e
iωt is the lattice displacement due to a phonon mode

with frequency ω. The first term in χ(u, t) does not modify the frequency of
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perturbation (elastic scattering), and thus we only keep the second term linear in
u. Then the time dependent susceptibility is of the form χ(t) = χ0e

−iωt + χ∗
0 eiωt .

Assume that the incoming photon has electric field E = E0e
−iωI t +E∗

0e
iωI t , where

ωI is the photon frequency. Then, the induced dipole moment is

P(t) = [χ0 ·E0e
−i(ωI +ω)t +χ∗

0 ·E∗
0e

i(ωI +ω)t ]+[χ∗
0 ·E0e

−i(ωI −ω)t +χ0 ·E∗
0e

i(ωI −ω)t ].
(1.23)

The first term is oscillating at a slightly lower frequency and thus corresponds to
the Stokes process, and the second term is responsible for the anti-Stokes process.
The quantum mechanical derivation of phonon scattering turns out to be much
more complicated, involving third order perturbation that includes the electron–
phonon coupling and neglects the HAA term [7, 25, 42, 43]. However, the conclusion
remains the same with simple semi-classical arguments [43, 44]. Therefore we will
not reproduce them in this thesis.

The Raman active phonon typically has a Lorentzian lineshape [45]. However,
when a sharp phonon mode with energy h̄ω0 interacts with a broad electronic con-
tinuum, the interference between the transition amplitudes for electronic continuum
Te and the phonon mode Tp results in a “Fano lineshape” [44, 46],

I (ω) = πρ(ω)T 2
e (ω0 − ω − V Tp/Te)

2

(ω0 − ω + V 2R(ω))2 + (πV 2ρ(ω))2
. (1.24)

The electron density of states, ρ(ω) = Im[G(ω)], is usually assumed to be
some broad function or even a constant, where G(ω) = ∑

e 1/(ωe − ω − i	)

is the unperturbed Green’s function for the electronic continuum. The electron–
phonon interaction is V , and R(ω) = Re[G(ω)]. Therefore, the Fano effect
is a phonon mode selective probe for studying the electron–phonon coupling in
metallic systems, which is especially useful when studying the mechanism of
superconductivity in some compounds [47, 48].

1.3 Symmetry Selection Rules in Raman Scattering

The symmetry properties of the scattering cross section, i.e., measured polarization
dependences, are determined by the symmetry properties of the Raman response
function, χ ′′(ω). Quite generally, the Hamiltonian of a system commutes with the
symmetry operators of the crystal’s factor group (space group without translational
symmetry operators). In other words, the Hamiltonian should transform as the
full symmetric irreducible representation of the crystal’s factor group. This is
called Neumann’s Principle [49], first stated by Franz E. Neumann and then later
popularized by his student Woldermar Voigt. It was later generalized by Pierre
Curie [50], stating that a physical phenomenon may exist and only exist in a medium
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that possesses the same symmetry characteristic of the phenomenon or that of a
subgroup of that symmetry.

The eigenfunctions of a Hamiltonian can be projected to form basis functions for
the irreducible representations of the group. For a certain point group under consid-
erations, let the initial state |i〉 in a scattering process have symmetry 	i and the final
state |f 〉 have symmetry 	f . The symmetry of the excitation, |f 〉 〈i|, is then equal
to 	f ⊗	∗

i . Let the electric field vector for the incident and scattered light transform
as 	εI

and 	εs , respectively. Then, a very general group theoretical statement is that
only excitations that satisfy the following relation are allowed [7, 51]:

	f ⊗ 	∗
i ⊂ 	∗

εI
⊗ 	εs . (1.25)

Since the algebra and symmetry properties of all irreducible representations for all
32 point groups in 3D are documented [52, 53], we can easily find out the allowed
excitation symmetries in a crystal.

Consider now the point group D4h, suitable for the lattice symmetry of URu2Si2,
which we will discuss in Chap. 3. The electric field vector transforms as 	−

5 (Eu)
along a-axis and 	−

2 (A2u) along c-axis. Then, 	−
5 ⊗ 	−

5 = 	+
1 ⊕ 	+

2 ⊕ 	+
3 ⊕

	+
3 (in the Bethe notation), or equivalently in the Mulliken notation, A1g ⊕ A2g ⊕

B1g ⊕ B2g . This suggests that only excitations with the symmetry of these four
irreducible representations are allowed for inelastic light scattering from the ab-
surface. In order to access the 	+

5 (Eg) excitations, we need to have 	−
5 ⊗	−

2 = 	+
5 ,

that is, scattering from the ac-surface with incident and scattered light polarization
orthogonal to each other (crossed polarization).

The superscript plus sign in the Bethe notation or the subscript g in the Mulliken
notation denotes parity even (stands for gerade, meaning even in German). Simi-
larly, the superscript minus sign and the subscript u mean parity odd (ungerade).
This distinguish is of course dropped for noncentrosymmetric crystals or 2D
wallpaper groups, as we will see in the following for Bi2Se3. One immediately
notices that, for crystals with inversion symmetry, the multiplication of any two
ungerade representation will always result in gerade representations. Therefore,
only at most half of the irreducible representations are allowed in Raman scattering.
This is indeed the case, and these excitations are called Raman active modes. The
excitations with ungerade symmetries are accessible by absorption or emission
spectroscopies, such as infrared spectroscopies.

In Bi2Se3, an interesting scenario happens where both excitations from the bulk
and from the surface need to be considered [Chap. 4]. The bulk lattice has symmetry
of the D3d group, which follows from a similar exercise as above, that only
excitations with the symmetries 	−

3 ⊗ 	−
3 = 	+

1 ⊕ 	+
2 ⊕ 	+

3 are allowed from ab-
plane scattering. Note here that scattering from the ac-plane does not yield any extra
symmetry channels. The surface states in Bi2Se3 belong to a different symmetry
group, C6v [54], which obviously does not have inversion symmetry. The electric
field vector in ab-plane transforms as 	5 (E1) and as 	1 (A1) along the c-axis. Thus,
the accessible symmetry channels from the ab-plane are 	5 ⊗ 	5 = 	1 ⊕ 	2 ⊕ 	6
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(A1 ⊕ A2 ⊕ E2), and the 	5 (E1) symmetry channel is only accessible from the
ac-surface. Note that in this group, 	3 and 	4 symmetries will remain silent for two
photon scattering process and will only be accessible by nonlinear optics.

The above relations are usually referred to as the Raman selection rules, which
determine the allowed excitations symmetries. However, the symmetry properties
of each irreducible representation impose much stronger rules on the Raman sus-
ceptibility tensors [51], which relates the cross sections for each symmetry channel
to the polarizations of light. The bilinear dependence of Raman susceptibility on
electric field polarization, εs ·χ · εI , implies the susceptibility tensor to be rank-2. A
very general and pedagogical recipe for obtaining the susceptibility tensors for each
symmetry channel of the 32 point groups is given by Callen in Ref. [55], and the
results for Raman scattering are tabulated first by L.N. Ovander [56] and then cited
in several monographs as the “Raman tensors” [7, 27].

We will not repeat the tables here but merely use group D4h as an example for
calculating the polarization dependence of cross sections using the Raman tensors.

A1g :
⎡

⎣
a

a

b

⎤

⎦ ;A2g :
⎡

⎣
c

−c

⎤

⎦ ;B1g :
⎡

⎣
d

−d

⎤

⎦ ;B2g :
⎡

⎣
e

e

⎤

⎦ , (1.26)

where the empty spaces in the 3 by 3 matrices are zeros, and the columns and rows
are x, y, and z Cartesian coordinates in the laboratory frame. The cross section of,
for example, the A2g symmetry is then proportional to |εx

s · R · ε
y
I |2 ∼ c2, where

R is the Raman tensor, εx = [1, 0, 0], and εy = [0, 1, 0]. Thus the excitations with
A2g symmetry will be contained in the XY scattering geometry. One would need
to do this repeatedly for all symmetry channels and for all scattering geometries,
to find out the expected polarization dependence of the excitations. Note that due
to time reversal symmetry, the circularly polarized light changes chirality on back
reflection. Thus, εR

I = [1,−i, 0]/√2 and εR
s = [1, i, 0]/√2. As we will see in

Chaps. 3 and 4, the circularly polarized light is important to separate A2g symmetry
from the other excitations [33, 57].

1.4 Chiral Excitations in Solids

As we introduced above, the phononic Raman cross section is identified as
proportional to the electric susceptibility tensor, which is restricted to real and
symmetric form [30]. Thus, time reversal symmetry forbids light scattering through
the fully antisymmetric Raman tensors, such as collective modes with A2 or
A2g symmetry [58]. Historically, the excitations in the antisymmetric channel are
referred to as the “chiral excitations” due to their intimate relationship with the spin
chiral operator s1 · (s2 × s3) [34, 36, 59]. For example, antisymmetric scattering was
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predicted for Dirac spin-liquid state in the spin-1/2 kagome system [36], but yet
unobserved to date.

It was noted by Placzek at the very end of his book that contribution
from antisymmetric tensors (A2(g) irreducible representation) may arise due
to breakdown of the polarizability description near resonance conditions [30].
Indeed, this was observed in resonant Raman scattering of heme proteins,
such as ferrocytochrome-c [60–62]. Besides resonance scattering, antisymmetric
nonresonant vibrational Raman scattering is allowed if one goes beyond the
Born–Oppenheimer approximations, such as in systems with exceptionally strong
electron–phonon coupling or in the proximity of a phonon mediated phase
transition [63]. Generally speaking, magnetic Raman scattering could also couple
to the antisymmetric tensor [7]. This is because both the magnetic moments and
antisymmetric A2(g) representations transform as a pseudovector (in the lowest
order). Many examples exist where sharp magnon or two-magnon peaks were
observed in the antisymmetric channel [1, 7, 31]. In magnetic materials, phonon
scattering symmetry selection rules are partly relaxed due to Faraday rotation,
which also lead to nonzero antisymmetric Raman matrix elements [64, 65].

For nonmagnetic and non-resonance Raman scattering from crystalline samples,
much less examples of nonzero signal with A2g symmetry are known. To the best
of our knowledge, all of the examples come from electronic Raman scatterings.
In general, antisymmetric excitations are allowed for electronic interband transi-
tions [56]. For example, transitions between crystal field split states can contribute
to the antisymmetric channel. Indeed, the very first observation of Raman scattering
in the antisymmetric channel was reported in 1968 from crystal field split states
of embedded magnetic ions (Eu3+:YAG) [66] and latter found in several rare earth
compounds [67, 68]. However, this is not a common observation, other than very
localized 4f electrons. Because most systems have full symmetric ground states,
and thus an A2(g) interband transition would require a fully antisymmetric A2(g)

excited state, which is typically not possible with few exemptions.
The most famous example is perhaps in the insulating cuprates, where an A2(g)

symmetry peak slightly below the charge transfer gap edge was observed [32, 69,
70]. This is later understood as excitonic interband transition between B1g and B2g

symmetrized copper 3d orbital states [32]. Such transition is in some sense also a
crystal field excitation, but the band width is much larger than in 4f systems, and
therefore the peak is also 2 orders of magnitude broader. An alternative explanation
to the peak was given by Khveshchenko and Wiegmann as dynamic chiral spin
fluctuations [59], which is a collective zero mode being pulled below the charge
transfer gap edge by the exchange interaction J . In this view, the excited state could
be thought of as a bound state between the double occupant and the hole sites,
where the A2(g) symmetry originates from the local “circular current” induced by
the charge transfer.

More recently, antisymmetric continuum was reported from the inter Dirac cones
excitations in graphene [71, 72]. Note that the electronic Raman cross section
of intraband transitions in metals is usually related to the inverse effective mass
tensor, which is always symmetric. That is, Raman scattering cross section of
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metals typically does not contain any signal in the fully antisymmetric A2(g)

channel. However, the excitations in semi-metallic graphene provided an exception
due to its peculiar helical band structure, i.e., the electron momentum locked to
pseudo-spin. Similar examples of spin-momentum lock-in can be found in many
topological materials [Chap. 4] and therefore provide interesting platforms to look
for antisymmetric Raman excitations in future works.

Here in this monograph, we add two more examples of electronic excitations
from antisymmetric channel to the above list. More precisely, we observe sharp
A2(g) collective modes in two entirely different nonmagnetic systems, heavy
fermion metal URu2Si2 and 3D topological insulator Bi2Se3. Observation of an
antisymmetric collective mode in nonmagnetic systems is highly unusual and rare,
and the mechanism is different for each case. This monograph is dedicated to
explore the properties, mechanism, and physical implications from these two new
systems.
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Chapter 2
Experimental Setup

Abstract Since the days when C.V. Raman and coworkers discovered inelastic
light scattering using Calcutta sunlight as the source in the 1920s (Raman, Indian
J Phys 2:387–398, 1928), many improvements have been done on Raman spec-
troscopy apparatus in the past century. Raman scattering setup has evolved into very
diverse forms, from portable or even handheld Raman spectrometers widely used
by forensic scientists and minefield workers to gigantic state-of-the-art triple-stage
grating spectrometers used in research labs. The data collection efficiency has also
improved many orders of magnitude, alongside with better spectral resolution and
polarization optics. This is due to improvements on almost every single element:
laser light source, polarization optics, aberration corrected lens, holographic blazed
gratings, off-axis parabolic mirrors, high precision slits, back illuminated CCD
detectors, and many other factors (Hayes and Loudon, Scattering of light by
crystals. Courier Corporation, Chelmsford, 2012; Palmer, Loewen, Diffraction
grating handbook. Newport Corporation, New York, 2005). Given the diversity and
breadth of this topic, it is impossible to have a complete account of all involved
instrumentations. In this chapter, I will introduce the basic elements common to
most low temperature polarization resolved Raman spectroscopic research labs, but
focus will be given to the setups we employ here at Rutgers. Then I will discuss
the data acquisition, error sources, and data analysis techniques we used in this
monograph.

2.1 Raman Scattering Setup

2.1.1 Laser

Although C.V. Raman originally used sun light as excitation source for his
pioneering experiments of inelastic light scattering [1], it is more desirable to use
monochromatic light source, where the energy is as sharply peaked as possible
(monochromaticity). Before the advent of both ruby laser and He–Ne laser in 1960,
gas discharge lamps were the only choice of light source for Raman scattering.
However, since the cross section of Raman scattering is usually very small,
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Table 2.1 The list of laser wavelength and typical output power in the Kr+ laser used in our
lab (Coherent Innova 302C), under “single line” configuration, operating at TEM00 mode (except
for the 752 nm line) under the listed current. Notice that this is the “optimized operating current”
that outputs maximum power and was measured by Coherent technician immediately after the
replacement of a new plasma tube. The typical operating current we use is around 32–35 A, and
the output power is less than listed below

Wavelength (nm) Energy (eV) Power (mW) Operating current (A)

799.3 1.55 103 36

752.5 1.65 200 36

676.4 1.83 190 41

647.1 1.92 760 41

568.2 2.18 340 41

530.9 2.34 440 45

520.8 2.38 272 45

482.5 2.57 155 45

476.2 2.60 195 45

413.1 3.00 650 45

406.7 3.05 415 45

350.7 3.54 500 45

extremely long exposure time is needed to observe the Raman lines, limiting its
applicability. In the accounts of Landsberg, Raman scattering in quartz requires
more than 15 h exposure time and sometimes more than 100 h [2]. Therefore, it
is desirable to have a much more intense and monochromatic light source. The
appearance of laser nicely solves both problems and has become an essential tool
for most of the Raman scattering experiments nowadays.

For most of the experiments in this thesis, we use a Kr+ ion laser (Coherent
Innova 302C) that allows several lasing lines from UV to NIR range, where the
most prominent laser lines are listed in Table 2.1. Notice that the “operating current”
tabulated in this table is the “optimized value” that outputs maximum power and was
measured by coherent technician immediately after the replacement of a new plasma
tube. The typical operating current we use is around 32 A, and the output power is a
little less than listed here.

Ion laser is one of the most popular choices for Raman scattering due to its
stability, large output power, and monochromaticity. Among them, Ar+ and Kr+
ion lasers are the most popular choices, because both of them have multiple lasing
lines in the visible spectrum, convenient for conventional Raman spectroscopy.

In an ion laser, the laser light is produced in the “plasma tube” [Fig. 2.1], which is
essentially a sealed cylinder with low pressure Kr gas. During operation, an electric
field is supplied to maintain the Kr gas ionized and in a highly excited state, creating
a “population inversion” for some atomic states, where the number of particles in
a higher energy state exceeds the number of particles in a lower energy state. The
energy stored within the population inverted state is eventually released through
cascade of “stimulated photon emission,” where all ions coherently radiate photons
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Fig. 2.1 Illustration of the resonance cavity in typical gas ion lasers. The ends of the plasma tube
are sealed with “Brewster windows,” not shown in the drawing

with the same energy and same phase and thus producing very intense, collimated,
and coherent radiation.

The ends of the plasma tube are sealed with “Brewster windows.” These are
quartz crystals with surface normal oriented at Brewster’s angle relative to the light
propagation direction. With this geometry, only light with p-polarization can pass
through the window and trigger stimulated emission. Thus the output laser light is
polarized in the direction that experiences zero loss through the Brewster windows.

Finally, two mirrors are placed outside the plasma tube and on the optical axis,
such as drawn in Fig. 2.1. These two mirrors form an optical cavity that stores the
electromagnetic energy escaped from the plasma tube. Both the “high reflector” and
“output mirror” are quartz coated with dielectric materials to achieve its desired
reflectivity within a certain frequency range. While the high reflector has practically
100% reflectivity, the output mirror is designed to have reflectivity slightly less than
perfect to allow part of the light intensity to escape the cavity and form the output
beam.

Due to the very large number of states in the plasma tube, many laser lines
and even much more plasma lines are simultaneously emitting. This is however
inconvenient for Raman scattering experiments, where we would like to use
monochromatic excitation. This is achieved through placing a “selector prism” in
the optical path, known as the “single line” configuration, shown in Fig. 2.1. Light
through the prism is dispersed such that only photon wavelength within a small
window may reach the high reflector flat mirror and be send back into the optical
cavity for further amplification. Thus, by adjusting the prism orientation, we can
easily switch between several laser lines.

Apart from the large size, expensive maintenance, requirements for large electric
power and water cooling, the main drawback of ion gas lasers is the nuisance
of “plasma lines.” These are the incoherent, non-lasing, emission lines of the ion
plasma. The intensity of the plasma lines are typically comparable to, or even
stronger than, many Raman spectroscopic features we are interested in. Further-
more, as an ion laser ages, the once optimized tube condition will unavoidably
change slightly, and therefore some weaker laser lines will stop emission after a
few years.

Another popular genre is the diode lasers (semiconductor lasers), which due
to its high efficiency can be made very compact with appreciable laser output
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power without water cooling. Diode lasers with any wavelength across the entire
visible spectrum can be found with relatively low price and therefore becoming
increasingly popular. The main drawback is its poor collimation, which requires
additional lenses outside the laser cavity.

Another common laser source is the solid state laser, which uses solid crystals as
lasing medium instead of the plasma tube in ion lasers. The lasing medium needs
to be optically pumped by another source, usually a diode laser. One of the most
popular solid state lasers is based on neodymium-doped yttrium aluminum garnet
(Nd:YAG) crystal, which has a 532 nm line often used for “laser pointers.” The first
ever built optical laser, the “Ruby laser,” is also a type of solid state laser. In our
lab, we have an air-cooled 532 nm solid state laser with about 50 mW output power
from JDS Uniphase Corporation, a 445 nm laser diode with about 5 mW output
power from Lilly Electronics, and a 462 nm laser diode with about 500 mW output
power from Thorlabs.

Ti:Sapphire and dye lasers are the most common types of coherent light source
with tunable wavelength we have in our lab, however both requiring pumping from
another laser source. The author does not use either of the tunable lasers in this
monograph.

2.1.2 Optical Setup

Figure 2.2 is an illustration of the basic optical setup for Raman spectroscopy in the
“pseudo backscattering” at Rutgers. Notice that the dimensions are not all drawn in
scale. All elements are fixed on a large optical table, but adjustments can be easily
made depending on the needs of the particular experiment. Several reflective high
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Fig. 2.2 Illustration of the optical setup for Raman spectroscopy at Rutgers. Note that the
dimensions are not drawn in scale
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power neutral density filters are placed in the optical path to reduce laser power
if needed. A complimentary “micro-Raman” setup sharing the optical table, laser
source, and spectrometer is not related to this monograph and thus is not shown
here.

As we explained in the previous section, the ion lasers typically contain a large
amount of plasma lines in the visible range and need to be filtered out as early as
possible. In our lab, we place a tunable prism type monochromator immediately
behind the laser and then pass the dispersed light through a 5 μm diameter pinhole
about 1.5 m behind the monochromator. An objective (obj. in Fig. 2.2) and a thin
lens (LBE) are placed across the pinhole as a beam expander, which magnifies the
1.5 mm diameter beam output from the laser to about 10 mm, such that we can
conveniently focus into a smaller spot (about 50 μm) on the sample. The pinhole
size is chosen to match the diffraction limit of the objective, D = 4λf

πd
, where λ is

the laser wavelength, f = 11 mm is the objective focal length, and d ≈ 1.5 mm is
the laser beam diameter. This combined setup also serves as a “spatial filter” that
significantly suppresses the unwanted plasma lines in the laser and also produces a
better Gaussian beam profile that propagates along the optical path.

A focusing lens, Lf , is used to focus the beam onto sample. Depending on
different operations, this can be an aspheric lens that results in a spherical spot
of about 50 μm spot diameter on the sample, or a cylindrical lens that results in a
significantly elongated spot, or even a Mitutoyo long working distance objective that
produces smaller spots. For most practical usage, it is sufficient to tilt an aspheric
lens slightly (about 20◦) to produce an elongated elliptical spot with larger area, thus
reducing the power density (laser heating) on the sample.

To avoid the elastic reflection from being collected, we employ the “quasi-
backscattering” geometry as shown in Fig. 2.2, where the reflected beam is outside
the collection cone and blocked. The incident light is at a small angle (about 17◦)
with respect to the sample surface normal. In all materials studied in this work, the
refractive indices are high enough such that the light propagation vector inside the
crystals is always less than 10◦, which is negligible for all practical concerns.

The secondary emission from the sample is collected by an achromatic lens
with f/2. After passing the polarization optics (“analyzers”), the light is focused
onto the spectrometer’s entrance slit by another achromatic lens. A large 50 mm
diameter flip mirror is placed in front of the cube polarizer to allow fast switching
to calibration lamps as source. The details of the polarization optics, spectrometers,
and calibration lamps will be discussed in the following sections.

Polarization Optics

The polarization of laser output is determined by the Brewster windows of the
plasma tube, which in our setup is always vertically polarized (out-of-plane
direction in Fig. 2.2). Thus a broadband λ/2 waveplate is placed behind the
monochromator to rotate the laser polarization into the direction suitable for the
experiment. By design, λ/2 waveplate has the property of rotating the linear polar-
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ization of light by 2θ relative to the input polarization, in the plane perpendicular to
the optical path, where θ is the angle between input polarization and the waveplate’s
“slow axis.” A broadband Brewster type polarization cube is placed behind LBE to
ensure that the degree of linear polarization on the sample is as close to 100% as
possible.

Notice that a Berek compensator is basically an adjustable retardation waveplate,
and therefore it can also operate in the λ/2 mode. In this case, the λ/2 waveplate
is unnecessary and can be replaced by the Berek compensator drawn in Fig. 2.2.
However, the degree of polarization in a Berek compensator critically depends on
its proper alignment and therefore is quite time consuming and troublesome. In
most cases, we only use the Berek compensator to produce circularly polarized
light. When put into λ/4 mode with θ = 45◦, the Berek compensator transforms
linearly polarized light into circular polarization. The advantage of using a Berek
compensator over broadband λ/4 waveplate is its flexibility in wavelength (200–
1600 nm) and polarization of incident light. A Berek compensator can be adjusted
to produce almost perfect circularly polarized light for a wide range of wavelength,
whereas any broadband waveplate suffers finite deviation from λ/4 retardation,
except within some small wavelength window. But because of this flexibility,
one has to be careful when aligning the Berek compensator to avoid introducing
ellipticity in the output light. This is done by adjusting 4 degrees of freedom
(assuming the light beam passes through the center of Berek compensator): 1
rotating axis around optical path (“orientation”), the 2 tilting axis orthogonal to the
optical axis, and the retardation of the compensator.

The typical procedures for Berek alignment are the following: First, one has to
properly align the compensator to be normal to the optical path by adjusting the
2 tilting degrees of freedom. This is done by looking at the back reflection from
the compensator surface when retardation is set to 0. When properly aligned, the
reflection should coincide with input beam. One can try to rotate the compensator
(“orientation”), and the back reflection spot should not move with changing
orientation. Next, one needs to align the slow axis of the Berek compensator with
respect to the linear polarization of the incident light, which is determined by
the cube polarizer behind LBE . Luckily, the slow axis is usually marked on the
compensator mount when bought. As long as the orientation of the cube polarizer is
known, it is trivial to orient Berek’s slow axis at 45◦ to the incident light. Usually,
one can buy a factory pre-aligned polarizer with markings on the mount and then
use it as a reference to align all other linear polarizers in the lab. In typical Raman
spectroscopy labs, all linear polarizers’ orientation is aligned with respect to the
gratings’ ruling direction, which is typically normal to the plane of incidence, thus
normal to the optics table. After the Berek orientation is set to 45◦, one rotates the
retardation to λ/4, which is documented for commonly used wavelengths in a pre-
calculated table (provided by the company from which the compensator is bought
from).

Due to many unavoidable errors in all the previous operations, it is important
to check and fine-tune the retardation at this point. This is done by putting a
reflective mirror, e.g., Ag coated, behind the Berek compensator and looking at



2.1 Raman Scattering Setup 29

the back reflection on a “half screen.” This screen should be placed between LBE

and the cube polarizer and should be positioned such that it blocks exactly half of
the incident beam. Needless to say, the reflective mirror has to be tilted in a way
such that the back reflected beam has a tiny overlap on the “half screen.” If the
output beam after Berek is perfect circularly polarized, the mirror reflected beam
through the Berek will be a linearly polarized light with polarization orthogonal to
the cube polarizer (combined action of reversed helicity by mirror reflection, and
the opposite retardation by passing through Berek in the opposite direction) and
thus should produce zero intensity on the “half screen.”

In the light collection path (lighter green in Fig. 2.2), a broadband (“zero order”)
λ/4 waveplate, marked by λ/4 in Fig. 2.2, is used instead of a compensator because
the Raman signal often spans a wide wavelength range. This waveplate must have
clear aperture comparable to the collection lens, L1, which is 38 mm in our lab.
Therefore, we use a 50 mm clear aperture mica-type λ/4 waveplate. The slightly
larger diameter ensures that all scattered lights collected by L1 pass through the
waveplate, so that the intensity can be consistently compared between experiments.
Sheet mica has the spectacular property of relatively flat retardation profile within
the visible spectrum with high transmission and can be made into large diameter.
Another popular choice is polymer waveplate, which has lower transmission but
can be made into very large size with much lower prices.

The cube polarizer behind the λ/4 waveplate is often referred to as the “analyzer,”
with the clear aperture of 50 mm. The cube polarization is oriented in the direction
that optimizes the grating throughput in the spectral regime of interest.

Spectrometer

In our lab, we use a custom designed Czerny–Turner triple stage spectrometer
by Acton Research Corporation, to collect and disperse the secondary emission
from the sample. All of the gratings and slit positions in the spectrometer are
motorized and computer controlled. The basic structure and optical paths inside the
spectrometer are illustrated in Fig. 2.2 [3], where the black lines denote the optical
path of undispersed “white light,” the red and blue lines denote the paths of light
with longer and shorter wavelength, respectively.

In this design, the dispersion of incident light is entirely achieved by reflective
planar gratings, which is basically a more advanced version of double slit interfer-
ence (in the first order): sin α + sin β = λ/d, with α and β being the incident and
diffracted light angles (from grating surface normal, thus having opposite signs)
for a particular light wavelength λ, and d is the averaged distance between grating
grooves [Fig. 2.3]. With elementary trigonometry, we see that the above “grating
equation” (diffraction equation for first order) can also be written as

2d sin

(
α + β

2

)
cos

(
α − β

2

)
= λ. (2.1)
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Fig. 2.3 Illustration of the
light path for a particular
wavelength, λ, by a
diffractive planar grating,
where the incident light is a
parallel beam, and grating
grooves are separated by d.
Figure adapted from Ref. [4]

Fig. 2.4 Illustration of the
mechanism of a sine bar
grating mount. As the screw
is extended linearly by the
distance x, the grating rotates
through an angle φ in such a
way that sin φ is proportional
to x. Figure adapted from
Ref. [4]

In most designs of spectrometers, the mirrors are fixed, meaning that the angle
between incident and diffracted light is a constant, α − β = 2K . Therefore, it is
more convenient to project different parts of the spectrum onto detector by rotating
grating about the central axis, i.e., scanning α+β = 2φ. The wavelength λ fulfilling
Eq. (2.1) is then proportional to sin φ, which is again proportional to the linear
displacement of a device called the “sine bar,” shown in Fig. 2.4. Thus by rotating
the lead screw connected to the sine bar, we mechanically project different parts of
the spectrum onto CCD detector.

The angular dispersion of light, which ultimately determines the spectral reso-
lution of the spectrometer, is a function of λ, α, and β. For incident white light at
a particular angle α, the first order diffracted light within wavelength regime δλ is
dispersed into a small cone given by δβ:

δβ

δλ
= 1

d cos β
. (2.2)

For small δβ, the linear span of light projected on CCD, δx = f tan(δβ) ≈ f δβ,
with f being the focal length of the spectrometer. Thus the linearly dispersion of
light on the CCD, which is one of the most important factors for determining the
spectral resolution, is
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δx

δλ
= f

d cos β
. (2.3)

Thus, a spectrometer’s spectral resolution is inversely proportional to the grating
grooves distance or proportional to the grooves density. In our lab, we have gratings
with three different groove densities: 150, 600, and 1800 grooves/mm. Another way
of improving angular dispersion is by having larger β, which corresponds to longer
wavelength [Eq. (2.1)].

Another important factor for determining the spectral resolution is the spectrom-
eter’s slit size. The entrance slit of the spectrometer, S1, is composed of a pair
of horizontal and vertical precision slits. The image on S1 can be thought of a
projection of the sample image (confocal image). Thus by controlling the opening of
S1, we limit the area on the sample from which we collect the signal. The laser spot
should be positioned in the middle of the slits to avoid aberrations and to maximize
the signal. The width of the horizontal slit in S1 should match the exit slit, S4,
which is also the confocal plane of S1 and the entrance slit of the last stage of
spectrometer, and will ultimately determine the spectral resolution. In the design of
our spectrometer, the width of the horizontal slits of S1 and S4 should match the
pixel size of the CCD detector. In practical operations, we often bin the CCD pixels
into superpixels to increase the signal intensity, with the compromise of decreasing
spectral resolution. The width of S1 and S4 should be adjusted accordingly to
maximize the efficiency.

One of the novel designs of this spectrometer is equipping a removable camera
behind S1 (not shown in Fig. 2.2). A computer controlled flat mirror can be
translated into the optical path behind S1, which sends the light into a high
sensitivity color camera. Thus we can simultaneously see the images of the entrance
slits and sample, which ensures the alignment of laser spot as well as collecting data
from the sample area of interest.

The first two stages of the spectrometer form a coupled double spectrometer
(ARC AM-505F) that usually operates in the “subtractive mode.” In this operation,
the double spectrometer acts as a spectral block filter of the input light, which
is dispersed in the first stage by grating G1 and then recombined by inversely
positioned identical grating G2 back into white light. The dispersion of the collected
spectra is entirely achieved by the last stage (ARC AM-506), which can be viewed
as a separate monochromator with a focal length of 660 mm, and the aperture ratio
(defined as the focal length divided by the grating length) is f/4.7. The spectral
resolution with 1800 g/mm gratings at 532 nm is about 0.9 cm−1. In “additive
mode,” G1 and G2 are positioned in the same direction, and thus about 3 times
better resolution can be achieved.

The advantage of operating in the subtractive mode is for better rejection of
elastic line and stray light. Since Raman spectroscopy is only concerned with
inelastically scattered light, the typically 8 orders of magnitude stronger elastically
scattered laser line needs to be blocked before projecting the spectrum onto CCD
camera. Otherwise, not only the CCD could suffer permanent damage, but also all
spectral features would be overwhelmed by the “overflow” of the strong elastic line.
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There are several ways of blocking the elastically scattered light [5], but triple stage
spectrometer has the advantage of the highest resolution (cutoff wavelength being
closest to the laser line) and best flexibility and therefore remains the most popular
choice among Raman spectroscopist.

The basic working principle of the subtractive stages is that in the first stage,
mirrors M1 and M2 focus the dispersed light on a horizontal precision slit, S2. The
opening of S2 determines the cutoff wavelength of the spectral range allowed to
pass, thus acting as a block filter. Mirrors M3 and M4 form the so-called relay stage,
which focus the light onto another precision slit, S3, that is identical to S2. This
additional slit allows significantly improved elastic line and stray light rejection.
The efficiency of S2 and S3 mainly depends on the resolving power of the first two
stages of spectrometer and the focusing power of the mirrors. Therefore, all of the
mirrors in the spectrometer are off-axis parabolic mirrors to minimize the spherical
aberrations.

The resolving power of a spectrometer is mainly determined by the grating
grooves density, focus length, and effective grating area. In our lab, we have three
sets of gratings: 150, 600, and 1800 g/mm. In order to optimize the dispersed light
intensity, all of the gratings are “blazed,” i.e., a specially designed groove profiles
to maximize the intensity in the first order diffraction.

Detector

The invention and popularization of charge-coupled device (CCD) detectors are
probably the single most important breakthrough for Raman spectroscopy in the past
30 years. The photon to electron conversion (quantum efficiency) is close to 100%
in the visible range for the most advanced commercially available CCD detectors.
The pixel size is as small as 20 μm while still possessing 200,000 electrons “well
depth” (dynamical range), thus allowing both high resolution and high sensitivity.

We have several CCD cameras in our lab for different purposes. The most
commonly used one is a back-illuminated silicon-based CCD from Princeton
Instrument with 400 vertical pixels and 1340 horizontal pixels. Since a grating
spectrometer does not use the vertical degrees of freedom, we always bin the
illuminated vertical pixels (typically about 150) into a superpixel. If the signal is
very small, we can further bin the horizontal pixels to increase the signal to noise
ratio (S/N) at the cost of lowering the spectral resolution.

At liquid nitrogen temperature, the dark current of our CCD is about 0.3
electrons/px/hr, and the readout noise is about 3 electrons. To reduce the noise and
maximize S/N, the CCD temperature is locked at −120 ◦C, and we usually use long
exposure times (300 s) to minimize the number of readouts.
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Cryostat

Many of the interesting physics and emergent behaviors, e.g., charge/spin/orbital
density waves, composite quasiparticles and superconductivity, regretfully only
happen at very low temperatures (typically below 50 K). The working principle of
most of the cryostats is similar to a Dewar, where one or more “vacuum jackets”
separate the sample space from the room temperature atmosphere [6]. The thermal
insulation is mainly provided by the vacuum space and thermal radiation shielding.
The shielding is connected to a heat reservoir below 100 K, such as a liquid nitrogen
jacket, which reduces the thermal radiation on the sample by about 100 times due to
Stefan–Boltzmann law. In our design, we utilize the back-flow of cold helium gas
to cool down the shielding without additional coolant and thus also able to reach
lower temperatures than using liquid nitrogen. In the sample space, the sample under
inspection is thermally connected to a cooling source, thermometer and heating coil.
These three components together provide a feedback loop for thermal stability at
low temperatures.

Depending on the purposes and working temperatures of the cryostat, vastly
different designs can be found on the market. In our lab, we use mainly a
custom designed continuous flow liquid “helium bath cryostat” made by Oxford
Instruments. This cryostat is connected to a small liquid reservoir through a needle
valve, which is again connected to external liquid helium Dewars. Therefore, in
principle, a temperature of 1.2 K can be reached by pumping on the sample space.
In reality, mainly due to radiation heating, the base temperature is about 1.8 K.
The main advantage of the bath cryostat is the large temperature adjustability and
cooling efficiency. By adjusting the needle valve opening and helium supply rate
into the reservoir, temperature between 2 and 300 K can be very easily stabilized
with little help of heater. Also, since the sample is in direct contact with the cold
helium gas, the cooling is particularly efficient on the sample surface, therefore
ideal for Raman spectroscopy where the laser heating is focused on a small
region on the sample surface. Since the heat is mainly conducted through the
helium gas, the degree of laser heating on the sample is not sensitive to sample
thermal conductivity. This is particularly important, because many of the physical
phenomena we are interested in are second order phase transitions, across which the
thermal conductivity experiences large change.

For most metallic samples, in optical regimes where most of the light is reflected,
1 mW of laser light typically results in about 0.5 K of heating in our cryostat at low
temperatures (below 20 K).

2.2 Data Acquisition and Analysis

The double spectrometer and the cryostat temperature are controlled by two
LabView programs, where the detailed spectrometer settings, response ratios,
backgrounds, temperatures, and laser powers are automatically recorded for each
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experiment. The third stage monochromator is coupled to the CCD camera, and
both controlled by Winspec (commercial program by Princeton Instruments), which
records raw counts in each frame, spectral calibrations, grating positions, exposure
times, etc. With all the information, we can convert the recorded counts per CCD
pixel into Raman response function, after accounting for several calibrations and
corrections listed below.

2.2.1 Instrumental Calibrations

The reliability of the data produced by a Raman spectroscopy lab depends a lot on
how the system is being calibrated. In our lab at Rutgers, we calibrate our system in
the following ways.

The temperature fluctuations of the room and cooling water may introduce
drifting of laser power during experiments, which has to be accounted for before
further data analysis. A thin quartz plate is placed behind the cube polarizer in the
excitation light path (darker green in Fig. 2.2) to reflect about 5% of light intensity
into a power meter. This reading is constantly recorded during the experiments, and
all spectra are automatically normalized to the laser power to avoid drifting over
long hours of experiments.

The grating positions of the spectrometer are controlled by step motors coupled
with mechanical arms (“sine bars”) [Fig. 2.4] [4], which needs to be related to the
wavelength of light imaged by the CCD. This is done by using “spectral lamps” that
produce narrow, intense lines of UV to NIR wavelengths due to the excitation of
various gases, commonly Hg, Ar, and Ne. Since the emission lines of these gases
are well documented by the National Institute of Standards and Technology (NIST),
we can readily relate the wavelength of these lines to the grating positions and
CCD pixels using the so-called spectrometer equations. This calibration procedure
is done semi-automatically across the entire UV-NIR spectrum by the computer
software provided by Princeton Instrument (Winspec manual, Appendix C), which
controls the CCD detector and AM-506 monochromator. Such global calibration
usually has larger error bars, which can be locally calibrated in the spectral window
of interest, again by spectral lamps. The ultimate spectral resolution is limited by
the spectrometer’s mechanics and CCD’s pixel size, which is better than 0.02 nm at
435 nm wavelength (for 1800 grooves/mm gratings).

The polarization cube, lens, spectrometer, and detector’s throughput all have non-
linear wavelength and polarization dependences, which, if not accounted correctly,
could lead to spurious excitation and polarization profile. This can be calibrated
by measuring the flux through all of the above optics from a known white light
source (standard candle). Since the flux from the lamp is known, by measuring
the recorded intensity on the CCD, we can derive the combined throughput ratio
of linearly polarized light at each wavelength, which we call a spectrometer’s
“response ratio.” In our lab at Rutgers, we use a NIST certified spectral lamp to
calibrate the combined throughput of the polarization cube, L2 lens, spectrometer,
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and CCD, for all individual gratings, grating positions, and cube orientations. A
metallic flip mirror is placed in front of the cube polarizer [Fig. 2.2], which easily
switches between the collimated light from the sample and from the spectral lamp.

Even when all lights and lasers are turned off, a small amount of background
room light (usually from instrument and computer LED indicators) and CCD
dark current can still contribute to the spectra. These contributions (about 0.3
counts/pixel/hour, or 3 counts/superpixel/min under 150 × 4 binning) are much
smaller than the typical signal from most samples and are usually ignored. However,
sometimes this is not entirely negligible compared to the sample signal and has to
be carefully measured and subtracted from the signal before further analysis.

2.2.2 Cosmic Ray Rejection

In order to minimize readout noise in samples with weak signal, we have to take a
long exposure time as possible. However, the earth surface is constantly under the
bombardment of highly energized muons, typically created by the decay of pions
in the upper atmosphere. These are very penetrating particles, thus very difficult
to block by shielding. They deposit energy in the CCD detector via the Coulomb
interaction as they traverse through the silicon sensor, which produce a usually large
spike in the spectra [7]. After about 10–20 min, the spectra would be dominated by
cosmic spikes, covering a large portion of the CCD detector. Once a pixel is covered
by a cosmic spike, the information within that pixel is lost. Therefore, it is better to
split the exposure time into several shorter consecutive “frames” and remove the
spikes in each frame and then average the frames. Thus the number of spikes is still
the same, but the amount of usable pixels is much more.

In practice, we take no longer than 5 min per frame, which typically contains
less than 5 spikes in the spectra. There are many different strategies in removing the
cosmic spikes, from simpler spacial or temporal filters to much more complicated
wavelet transformation algorithms [8]. In our lab, we choose to use a temporal
filter, requiring us to always take at least 3 consecutive frames per experiment.
The removal of spikes is done automatically by a C++ code developed by Adrian
Gozar [3], where we compare the data in each pixel across the frames and simply
remove the data in a particular pixel in a particular frame, if we find that pixel to
have a much higher photon counts (> 5

√
N , where N is the median counts of that

pixel across the frames) than the same pixel in the other frames. In the end, we only
average the data in the remaining pixels.

2.2.3 Optical Corrections

The signal recorded at the detector is in the unit of counts/second/pixel. This has to
be converted into differential cross section and corrected for the optical constants
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of the sample, before quantitative analysis of the data can be done. The detailed
conversion between measurement and theory was first done by Loudon in 1965 [9],
although discussions of optical corrections have already begun as early as 1951 [10].
Here, we follow the simplified semi-quantitative approach as given in Ref.[11, 12],
where we convert the measured photon counts into the dimensionless “scattering

efficiency” per unit solid angle per unit energy (in units of cm−1), d2S
dΩdω

, which is a
dimensionless quantity.

Due to the construction and calibration of grating spectrometers, we first
convert the measured data (after subtracting CCD dark current and environmental

background) into the cross section per unit wavelength, d2S′
dΩ ′dλ

, by normalizing the
CCD count rate to laser power and response ratio. Here dΩ ′ is the solid angle
defined by the collection lens L1. This can be easily converted into per unit energy
by noting that d

d(−ω′) ∼ λ2 d
dλ

. Since we are usually interested in the Stokes process,
we usually write ω = −ω′.

However, this quantity depends on the details of optical properties of the sample.
Most importantly, due to refraction at the sample/vacuum interface, the solid angle
inside the crystal, dΩ , could be very different than the collection solid angle fixed
by the lens, dΩ ′. In fact, one can easily see that

Ω ′

Ω
= 1 − cos θ ′

1 − cos θ
. (2.4)

For small θ ′ as in most experimental setups (notice not the case in micro-Raman
setups where the NA of the objective is easily larger than 0.5), dΩ ′ can be
approximated as n(λ)2dΩ (assuming vacuum outside sample), where n(λ) is the
refractive index. This could be quite sizable in many materials, for example, n(λ) ∼
4 for germanium in the visible range.

In addition, only a portion of incident photon transmits across vacuum/sample
interface and the same for the scattered photon. Therefore, the real scattering
efficiency in the sample should be 1

(1−R(λL))(1−R(λ))
times larger than we measured.

Lastly, we should account for the scattering volume in different samples, which is

roughly Veff ∼ D2

α(λL)+α(λ)
, where D2 is the laser spot size, and α is the absorption

coefficient which determines the penetration depth of light in the sample. More
comprehensive corrections are given in Ref. [13].

Combining the above corrections, we can calculate the scattering efficiency in
the sample:

d2S

dΩdω
∼ n2(λ)

d2S′

dΩ ′dω

α(λL) + α(λ)

D2(1 − R(λL))(1 − R(λ))
. (2.5)
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2.2.4 Data Analysis

The data analysis of this monograph is mainly done in Mathematica and then
exported into OriginPro for plotting. Since the Raman signals in this study are
mostly small, it is important to carefully address the issue of noise, signal to noise
ratio (S/N), and statistical analysis. The signal noise in our spectra comes from
several sources, with mainly the following ones.

Photon Shot Noise

This is due to the discrete nature of photons, where the probability of collecting
N photons with a particular energy within a fixed time interval is described by the
Poisson distribution [14]:

Pμ(N) = e−μ μN

N ! , (2.6)

where μ is just the average number of photon counts we would expect, N , if we
repeat the finite time interval experiment infinitely many times (or equivalently, in
a single experiment with infinitely long collection time). In this limit, the standard
deviation (SD) of a Poisson distribution can be shown to be proportional to

√
μ [14].

Therefore, using the principle of maximum likelihood, the SD of any finite time
experiment that counted N photons is just simply

√
N , i.e., S/N= N/

√
N is also

proportional to
√

N . Since the photon events are assumed to occur randomly in
time (white noise in time domain), in order to achieve higher S/N, the length of
exposure time we need increases quadratically. For reasonably large signal μ �
10, the photon events approach a normal (Gaussian) distribution around its mean
value, and thus the SD of two distributions becomes identical, i.e., GX=μ,σ=√

μ(N).
This approximation is basically fulfilled in all our experiments, and thus we usually
consider the data to be following a Gaussian distribution. Sometimes, the signal is
extremely low and the uncertainty is too large to make a claim, and then we will
have to either increase the laser power (at the cost of laser heating) or increase the
number of frames in each experiment.

Vibration and Focus Drift

Due to cosmic spikes issue, we prefer averaging signal from many consecutive
frames than to take a single long exposure. This assumes that each frame was
taken under the exact same conditions, i.e., the signal is perfectly homogeneous
in time. This is obviously not possible due to realistic concerns, such as temperature
fluctuations, laser power fluctuations, vibrations, etc. While the temperature and
laser power are easier to monitor in real time and compensate through software,
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the focus and position of the laser spot drifting due to sample vibration are much
more difficult to avert. The common practice is to setup all of the equipments on
an optical table with pneumatic damper legs. However, the minute vibrations from
pumping lines, liquid helium transfer line, and room air flow are unavoidable and
will eventually lead to noticeable laser defocus and spot drift after roughly an hour.
Therefore, we usually prefer to split a single long experiment into several 30 min
shorter experiments, such that we can promptly adjust the drifting issues. This will
of course introduce additional human errors, and therefore care has to be taken to
check that the averaged signals between each 30 min experiments are consistent
with each other within SD.

CCD Detector Noise

A charge-coupled device (CCD) is a photodetector composed of an array of top-
gate capacitors on a semiconductor (usually silicon), where each capacitor works
as a quantum well (pixels) that stores electrons proportional to the light intensity
being illuminated [15]. The photons are absorbed from the back of the detector
(in back illumination configuration) and are converted into electrons through
photogeneration of electron–hole pairs across the semiconductor band gap. The
photogenerated electrons are captured and integrated in the quantum well during
light exposure and to be “readout” at a later time. There are two main sources of
noise in a CCD device: (1) the “dark current,” which is due to thermal generated
charge carriers in each pixel at finite temperature. Thus the noise arising from the
dark current can be reduced by lowering the operation temperature of the CCD
detector and minimizing the readout pixels by using only the parts illuminated by the
scattered light. Typically, the dark current can be reduced bellow 1 electron/pixel-
hour in commercially available liquid nitrogen cooled silicon-based CCDs; (2) the
readout noise, which comes from the uncertainties in the electrical measurement of
a very small charge current, such as the charge stored in each pixel. This noise is
contributed by many elements and can be somewhat reduced by better electronic
design, for example, on-chip pre-amplifiers and more efficient analogue–digital
converters, but it is impossible to entirely remove. In well-designed CCDs, the
readout noise is as homogeneous in time as possible and therefore can be reduced
by averaging many frames or increasing exposure time; (3) electronic interferences,
such as power line voltage fluctuations, radio frequency interference, electronic
noise from other power line sharing instruments, etc. The CCD readout signal is DC
and usually within the microvolt range, which can easily couple to many sources
of electronic interferences, making it very challenging for a precise measurement.
In our lab, the CCD camera power is fed through a separate UPS system with line
filter and connected to an isolated ground line. All of the cables are shielded by
braided metal strands and using twisted pairs whenever possible; and (4) spikes due
to energetic charged particles generated by cosmic rays. While intense cosmic spikes
are easy to remove by taking multiple frames in every experiment as we discussed
in the previous section, weak spikes comparable to the signal can be confusing and
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hard to distinguish. Luckily, this almost never happens and can be further reduced
by using minimal area of CCD detector.

Statistical Analysis

From the above discussion, it is clear that noise and therefore uncertainty are
unavoidable in the experiment. The Raman scattering efficiency is almost always
very small, meaning that only a small fraction of incident photon is inelastically
scattered. If the temperature regime of interest is relatively high, e.g., above 20 K,
then we can increase the S/N by increasing laser power. Since we use continuous
wave laser with a pretty large spot, laser damage of the sample is usually not a
consideration for most of our studies. However, most of the phenomena we are
interested in can only be observed below 20 K, and thus we are usually limited to a
few milliwatts of laser power. Therefore, it is important to design the experimental
apparatus to be as stable as possible, such that we can increase the S/N by averaging
more experiments or increasing exposure times.

At the end of the day, we would like to know the uncertainty in our signal and
the confidence level of our claims. The error of the intensity associated within δλ or
δω can be easily found from statistical analysis of signal in repeated experiments or
frames. In most practical cases, the probability function of measurement value can
be considered as a Gaussian distribution, and thus the best estimates can be easily
computed following text books [14].

For example, let the secondary emission intensity recorded by a certain CCD
pixel (in unit of photon counts) to be ν. This is of course only a theoretical value
that we do not know. But following the above discussion, if ν is a reasonably large
number, then the probability function of the measurement at this pixel, n, will follow
a Gaussian distribution centered at ν with SD of σ :

Gν,σ (n) = 1

σ
√

2pi
e

−(n−ν)2

2σ2 . (2.7)

Regretfully, since we do not know ν, we do not know σ either. However, the
properties of the Gaussian distribution help us to estimate and put constraints on
the most probable values of ν and σ from N repeated measurements. Let the value
of the i-th measurement be ni , then the best estimates of ν and σ would be ñ ± σñ

and σ̃ ± σσ̃ , respectively. From the properties of Gaussian distribution, we know
that [14]

ñ = 1

N

N∑

i=1

ni (2.8)
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σ̃ =
√√√√ 1

N − 1

N∑

i=1

(ni − ñ)2 (2.9)

σñ = σ̃ /
√

N (2.10)

σσ̃ = σ̃ /
√

2(N − 1) . (2.11)

One has to be careful when plotting or interpreting the error bars of data points,
which are usually the averages of many measurements. The error bars could reflect
either σ̃ or σñ, depending on the content of the plot. σ̃ reflects the standard deviation
of the measurements, where one would expect the results of the next measurement
would likely be, whereas σñ reflects the uncertainty in our estimate of ñ, which is
important for determining the confidence interval of the spectra, and therefore the
significance of any claims that follow from it.
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Chapter 3
Raman Scattering in URu2Si2

Abstract In this chapter, I will introduce our Raman scattering study of the “hidden
order” (HO) and antiferromagnetic (AFM) phases in URu2Si2, a heavy fermion
material of undiminished interest in the condensed matter community for over thirty
years. I will first give a short overview on the heavy fermion physics and the exotic
phases in this compound, where focus will be given on the experimental results
[Sect. 3.1]. Then I will describe typical sample preparation and characterization
procedures, which are particularly important for detecting the electronic phases in
URu2Si2 [Sect. 3.2]. In Sect. 3.3, I will present our Raman spectroscopic results in
the pristine and Fe substituted URu2−xFexSi2 samples, which are fully consistent
with a minimal model that explains the origin of the unusual A2g susceptibility in
URu2Si2 [Sect. 3.4]. We will also discuss the origin of the collective mode in the
ordered phase at low temperature and the interrelation between the HO and AFM
phases.

The work in this chapter is done in collaboration with E.D. Bauer (LANL), R.E.
Baumbach (NHMFL and FSU), Kristjan Haule (Rutgers), M.B. Maple (UCSD), and
J.A. Mydosh (Leiden U.). The results on the symmetry breaking in the HO phase of
pristine URu2Si2 are published in Ref. [1]. The results on the interrelation between
the HO and AFM phases in URu2−xFexSi2 are published in Ref. [2].

3.1 Introduction

3.1.1 Kondo Effect and Heavy Fermion Systems

The heavy fermion metals have been a constant source of emergent behavior related
to their unconventional superconductivity and novel magnetism for more than 30
years. At the heart of the heavy fermion physics lie strong electron correlations,
leading to variety of emergent phenomena, e.g., heavy Fermi liquid [3], quantum
critical transitions [4, 5], multipolar orderings [6], and unconventional supercon-
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Fig. 3.1 The Kmetko–Smith diagram showing the degree of electron localization and itiner-
ancy [9]. Figure adapted from Ref. [10]. The f -electrons are usually very localized, leading to
magnetic ground states at low temperature, as opposed to d electrons which commonly form
itinerant bands. However, along every row, there would be elements where the electrons behave
dual character, leading to rich and unpredictable ground states at low temperature

ductivity [7, 8]. Figure 3.1 is a modified periodic table know as the Kmetko–Smith
diagram, showing the degree of electron localization and itinerancy for d and f

electrons. In general, f electrons are more localized than the d electrons due to the
more positive nucleus. But higher principle quantum number also means more radial
nodes in the electron wave function, thus increasing the orbital radius. The result is
that the electrons in many elements (white region) possess a dual character of being
partly localized and partly itinerant, leading to rich and unpredictable ground states
at low temperature. Moreover, when strong interaction is introduced between the
highly localized and partly filled f or d orbitals and the itinerant conduction bands
from spd electrons, the result is a zoo of novel phenomena including the curious
Kondo effect, non-Fermi liquid, unconventional superconductivity, and so on.
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The Kondo Effect

Armed with the cryogenic techniques developed in Leiden University, experimen-
talists systematically studied temperature dependence of resistivity in metals. It was
noted by W.J. de Haas in 1933 that good conductors, such as gold and copper,
sometimes develop a strange resistivity minimum at very low temperature [11]. This
phenomenon has been widely observed across many labs globally and is against
the common belief that the resistivity of metal should decrease monotonically
with decreasing temperature. One of the main complications to understanding the
effect was due to various contradicting experimental reports on the role played
by the impurities; namely, whether the impurity needs to be a particular element,
or is it generic to any material possessing a certain (yet unknown) property?
Physicists were clueless about this mysterious effect until Bernd Matthias and
Myriam Sarachik at Bell Lab proved that the resistivity minima are associated
with a trace amount of magnetic impurities in the metal [12–14]. More precisely,
a nonmagnetic metal host mixed with trace amount of magnetic impurity would
display the resistivity minimum if and only if the doped alloy is magnetic. The
big question was when does local magnetic moment (1% Fe for example) in
metallic alloy would induce global magnetism and when would not? How does a
macroscopic electronic property such as the resistivity minimum has anything to do
with the tiny local magnetic moments? Almost immediately, Philip W. Anderson
also working in Bell Lab developed a model explaining the formation of local
magnetic moments in metals [15], which is essential for solving this three decades-
old problem.

Anderson’s model elegantly combines the ideas of local Coulomb interaction
and virtual bound states between free electron and local atomic orbitals. We use
its simplest form, with one electron in the conduction band (spd orbital) and one
electron from the f orbital as an example here:

H =
∑

σ,k

εknσ,k +
∑

σ,k

(Vkc
†
σ,kfσ + V ∗

k f †
σ cσ,k) +

∑

σ

εf nf σ + Unf ↑nf ↓. (3.1)

The first three terms account for the virtual bound state with conduction electrons.
Here, σ and k are, respectively, the spin and momenta quantum numbers, εk is
the energy of a conduction band, and nσ,k is the conduction electron density.
Vk is the hybridization matrix element between f orbitals and conduction band,
c

†
σ,k and f †

σ are creation operators for an electron in the conduction band and
f orbital, respectively. The last two terms describe the local interaction in the
atomic limit, where εf is the f orbital energy for single occupancy, nf σ is the
density, and U is associated with on-site Coulomb energy for double occupancy.
At the heart of Anderson’s model is Coulomb’s interaction of the f -orbitals, U ∼∫
r,r ′ ρf (r)ρf (r ′)/|r − r ′|, where ρf (r) is the electron density of the f -orbital at

position r .
In the atomic limit, the energy cost of adding or removing one electron from the

magnetic f 1 configuration is �E = U/2 ± (εf + U/2). That is, for larger and
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positive U > |U + 2εf |, the ground state would prefer the doubly degenerate and
magnetic f 1 configuration. On the other extreme where we put U = 0, the “semi-
core” f -electron can tunnel out to hybridize with the surrounding electron sea. The
hybridization broadens the localized f -states to a finite width, w(ε) ∼ πρ(ε)|Vk|2,
where ρ(ε) is the density of states. Therefore, we see that the Coulomb interaction
and hybridization are competing with each other for the ground state. Anderson
concluded that, within the mean field limit, the critical Coulomb interaction is Uc =
πw0, where w0 is the f -orbital broadening averaged over the conduction band width
around the Fermi level [10]. For metallic hosts with higher density of states, w0 is
typically larger, and therefore the system will favor hybridization over a magnetic
ground state. That is, the Fermi level will cross the very broadened and half-filled
f -orbital, resulting in a nonmagnetic (because spin up and down are degenerate) and
metallic phase. However, if one reduces w0 such that U > Uc, then the relatively
sharp spin up and down orbitals separated by U are split across the Fermi level.
Therefore, local moments form and the metallic alloy becomes magnetic.

One of the most interesting results proving the Anderson model is the appearance
of a third peak crossing the Fermi energy in the photoemission (particle removal) or
the inverse photoemission (particle addition) spectra. This peak is also known as the
“Kondo resonance,” which arises purely due to interaction, and therefore the peak
area is equal to the quasiparticle weight Z. The peak width is roughly the Kondo
temperature TK , which sets the crossover between local impurity behavior where the
spin is free and the low temperature Kondo regime where the spin and conduction
electrons are highly entangled. This peak intensity is set by the scattering phase shift
at the EF , which when combined with Friedel sum rule represents the number of
f -electrons bound inside the resonance. The most remarkable feature here is that the
Kondo resonance is guaranteed to peak around EF with width about 1 meV, while
the Coulomb interaction U giving rise to it is typically on the order of 10 eV.

The key consequence of Anderson’s model is that the local magnetic moments
would develop antiferromagnetic coupling with the conduction electron sea at low
temperature when charge fluctuations are neglected, instead of the more intuitive
ferromagnetic coupling. If we start from an isolated atomic limit where Vk = 0,
then we are looking at local atomic physics where the dominating features are due
to valence fluctuations. But as we turn on hybridization Vk while keeping U much
larger than the conduction band width D, the f 2 configuration is integrated out by
the so-called Hubbard operators, Xσ0 = |f 1

σ 〉 〈f 0| and Xσσ ′ = |f 1
σ 〉 〈f 1

σ ′ |, which
does not allow double occupancy of the f -electrons. The Anderson model now
reduces to the Hubbard model with infinite U:

H =
∑

σ,k

εknσ,k +
∑

σ,k

(Vkc
†
σ,kX0σ + V ∗

k Xσ0cσ,k) +
∑

σ

εf Xσσ ′ . (3.2)

This is equivalent to the high temperature regime where the local impurity is free to
do a spin flip, with finite probability of hopping into the conduction sea.

However, if we keep lowering the temperature, the high energy degrees of
freedom are continuously integrated out, leaving the f -electron set in the f 1
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configuration and the local moment has only spin degrees of freedom. Then the
local spin can only flip through virtual charge fluctuations, where the spin of the
f -electron is exchanged with the spin of a conduction band electron. In this case, the
energy of the singlet bound state between the f and conduction electron is lowered
by J ∼ V 2

k [ 1
εf +U

− 1
εf

]. The low energy Hamiltonian is now reduced to the famous
(single impurity) Kondo model:

H =
∑

σ,k

εknσ,k +
∑

k,k′
Jc

†
kασ̂αβck′,β · Ŝf . (3.3)

Here, σ̂αβ measures the electron spin at the impurity site, and Ŝf = 1
2f †

α σ̂αβfβ

measures the spin of the f -electron.
Jun Kondo soon found out that when using Anderson’s model to calculate the

electron scattering in metals with dilute magnetic impurities, the scattering rate of
conduction electrons has a logarithmic divergence at low temperature, leading to
a resistivity minimum. The resistivity upturn eventually saturates when all local
electrons form singlet virtual bound states with conduction electrons. Thus, the
local magnetic moments are “Kondo screened” at low temperature. This is as if the
magnetic moments of the local impurities “dissolve” into the conduction electron
sea, leaving behind the spinless “Kondo singlets” or “Kondo holes” at local impurity
sites [10].

Heavy Fermion

After finding the exact solutions to the Kondo Hamiltonian in the entire temperature
range by Natan Andrei and Paul Weigman in 1980, the Kondo problem for dilute
magnetic impurities in metals is completely solved. However, the physics is much
more complicated when the magnetic atoms form a lattice that interacts strongly
with the conduction electron sea, known as the Kondo lattice. The first well-studied
Kondo lattice is probably the Kondo insulator SmB6 in 1969 [16]. But the field
did catch much interest until superconductivity was observed at about 0.5 K in
CeCu2Si2 by Frank Steglich in 1979 [17], where superconductivity seems to emerge
from a Fermi liquid like ground state with unusually heavy electron mass, i.e.,
heavy fermion liquid. I will only qualitatively describe the phenomenology in heavy
fermion materials, where a comprehensive description of the heavy fermion physics
can be found in monographs such as Ref. [18] and in some manybody physics
textbooks such as Ref. [10].

The heavy fermion compounds often display a giant Sommerfeld coefficient
(γ = limT →0 C(T )/T ∼ 450–1600 mJ/mol K2, compared to roughly unity in
normal metals) and a giant magnetic susceptibility at low temperatures (χ ∼ 8–
50×10−3 emu/mol, compared to roughly 10−6 emu/mol in normal metals). The ratio
of the two is proportional to the dimensionless quantity known as the Wilson ratio,
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Rw = π2k2
Bχ

g2μ2
BJ (J + 1)γ

∼ 218.7χ

μeff γ
,

which remains the same order of magnitude as unity across most heavy fermion
metals. Notably, Rw = 1 is expected in a free electron gas model such as Fermi
liquid but is typically larger than 1 due to electron correlations. Here, the extremely
large effective mass and magnetic susceptibility all point to strong electron corre-
lations, which eventually renormalize to quasiparticles that are closely described
by the Fermi liquid theory. A trend was observed that with increasing Wilson
ratio, the low temperature ground state seems to shift from superconductivity, to
nonmagnetic metal, to long range ordered magnetism [19]. The observation suggests
the competitive roles played by magnetism and superconductivity. Therefore, much
focus has been put in understanding the magnetism in heavy fermion systems,
which interestingly share several similarities; Most notably, they all possess a large
antiferromagnetic susceptibility with a temperature dependence that qualitatively
follows the Curie–Weiss law near the room temperature, χ ∼ (T + �)−1. The fit
to Curie’s law typically yields a relatively large effective moment around 2–5 μB

at high temperatures, close to the free ion limit. Moreover, the separation between
f -atoms is typically larger than 4 Å, above the “Hill limit” of about 3.25–3.50 Å,
where the f -orbitals cease to overlap and long range ordered magnetism is predicted
to prevail. This is quite surprising because the low temperature ground state of heavy
fermions is not all long range ordered and sometimes not even magnetic. The origin
of this contradiction is usually explained similar to the Kondo effect, where the local
magnetic moment is dissolved into the conduction sea.

Within the Kondo model, the local magnetic moment at xi induces Friedel
oscillations in the nonlocal spin density, which again couples to a magnetic moment
at xj , thus giving rise to a long ranged conduction electron mediated magnetic
interaction, known as the RKKY interaction. The typical energy scale for RKKY
interaction in solid is TRKKY ∼ J 2ρ, where J is the effective single impurity
Kondo coupling between local f orbital electrons and conduction band, and ρ

is the conduction electron density of states. However, there is actually another
energy scale in a Kondo lattice competing with TRKKY , that is the Kondo energy,
TK ∼ D exp[ −1

2Jρ
], where D is the conduction band width. If Jρ is small, then

RKKY interaction dominates the low temperature phase and typically favors an
antiferromagnetic ground state [Fig. 3.2]. For large Jρ, however, Kondo interaction
stabilizes a ground state where each magnetic atom resonantly scatters conduction
electrons. Therefore, one can expect a quantum phase transition when Jρ is at a
critical value where RKKY and Kondo energy scales are comparable.

Due to Bloch’s theorem, the coherent elastic scattering in the heavy fermion
ground state should produce a renormalized quasiparticle band, with band width
roughly equal to TK . In a Kondo lattice, this new band can be understood as
a hybridization of the local f states with the conduction band, as illustrated
in Fig. 3.3 [21]. The hybridized bands have a narrow indirect gap, �h ∼ TK ,
and a larger direct gap 2v ∼ √

DTK . Due to the flatness of the bands near
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Fig. 3.2 The Doniach phase
diagram illustrating the
competition between the
RKKY and Kondo energy
scales in a Kondo lattice
system [20]. With increasing
J , the ground state typically
shifts from an
antiferromagnet to
paramagnetic heavy Fermi
liquid, resulting in a quantum
critical point at J = Jc.
Figure adapted from Ref. [20]

T

JJc

TN

TK     exp(–           )1
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Fig. 3.3 Illustrations showing band dispersion and tunneling spectra of a Kondo lattice, adapted
from Ref. [21]. (a) Schematic drawing of heavy quasiparticle dispersion showing the hybridization
between local f states with the itinerant spd conduction band in a heavy fermion material below the
coherence temperature, displaying direct (2ν) and indirect �h hybridization gaps. (b, c) Computed
tunneling spectra into the itinerant and localized electron bands. The interference between both
tunneling channels (cotunneling) results in a Fano lineshape [24]. Figure adapted from Ref. [21]

Fermi surface, the Sommerfeld coefficient γ in heavy fermion systems is typically
hundreds of times larger than in normal metals [3, 19], suggesting enhancement
in the conduction electron effective mass and hence the name “heavy fermion.”
The drastic mass enhancement and direct band gap opening below the coherent
temperature were confirmed by infrared spectroscopy measurements, where the
mass enhancement m∗/m ∼ D/TK was verified in many materials [3]. The low
temperature resistivity possesses T 2 dependence as expected from Fermi liquid, and
optical conductivity shows a renormalized Drude peak.

A remarkable feature predicted by the above picture is the Fermi surface volume
expansion [22]. Without any hybridization, the Fermi surface is composed entirely
of the conduction spd-electrons, which would enclose a volume not counting
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the f -electrons. However, according to the Luttinger sum rule, the Fermi surface
volume is determined by the number of valence electrons (including both local
and conduction), independent of the interaction or local impurities involved. This
is achieved through the Friedel sum rule, which claims that the number of valence
electrons must be increased by the amount proportional to the interaction induced
phase shift at the Fermi surface. Combining the two sum rules, one concludes
that the hybridization must renormalize the spd-band in such a way that the Fermi
surface encloses a larger volume consistent with both local and conduction electron
counting. This is basically just another version of the Kondo resonance peak in
the single impurity Kondo model. Here, the resonance peak at the Fermi energy
originates from the flat part of the renormalized quasiparticle bands in Fig. 3.3,
which results in the “double peak” structure in the density of states, as opposed to
the single peak in the impurity model. Experimentally, it has been demonstrated by
quantum oscillations that the Fermi surface in CeRhIn5 expands to a larger volume
after the antiferromagnetism is quenched by applying hydrostatic pressure [23].
The Kondo coupling constant J increases with pressure, such that the ground state
shifts from antiferromagnetic to heavy fermion, and the Fermi surface volume also
changes accordingly.

One of the main reasons for the interest in studying the heavy fermion metals
is the very large discontinuity of specific heat, �C, across the superconducting
transition temperature, Tc. In the standard BCS theory, �C = 1.43γ Tc ∼ N(0),
where N(0) is the density of states at EF . In many heavy fermion systems, such as
the first example of heavy fermion superconductor, CeCu2Si2, �C ∼ 500 mJ/mol
K, suggesting a huge value of density of states has been gapped out at the
superconducting transition [17]. This is highly unusual, because in BCS theory we
would expect Tc ∼ 1.13ωD exp[− 1

V N(0)
]. For heavy fermion superconductors, the

Debye frequency ωD and electron–phonon coupling potential V are comparable
to many standard BCS superconductors. That is, the 3 orders of magnitude larger
N(0) implies that we should have a room temperature superconductor. However,
the transition temperatures of heavy fermion superconductors are typically a
disappointingly low number, regularly below 1 K. Therefore, it is highly desirable
to understand the mechanisms for such “suppression” of Tc in these materials, in the
hope that we might one day be able to drastically raise the transition temperature.

Although the thermodynamic and transport properties of many heavy fermion
materials have been thoroughly studied in the 80s [19], and the electrodynamic
response was more or less understood after the 90s from infrared spectroscopic
studies [3]. Many details of the band hybridization and dynamical properties of the
heavy electrons are still not fully understood even to date and remain an interesting
and progressing field of study. Recent development of new experimental techniques,
in particular the high resolution and dilution fridge temperature scanning tunneling
spectroscopy (STS), has helped us understand the “composite” nature of the heavy
fermions, which produces a characteristic Fano lineshape in the tunneling spectra
[Fig. 3.3] [21, 25–27]. On the theoretical side, the development of dynamical
mean field theory and relevant computational techniques has greatly helped our
understanding and even predictive powers in the strongly correlated electron
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systems [28–30]. Very recently, the topological properties in heavy electron systems
rekindled physicists’ interests in the field, leading to emergence of new concepts
such as topological Kondo insulators [31].

URu2Si2

Among the many known exotic heavy fermion materials, URu2Si2 has been particu-
larly interesting due to a mysterious nonmagnetic and non-structural phase transition
at THO = 17.5K, also known as the hidden order (HO) transition [32]. URu2Si2 has
body centered tetragonal structure characterized by the D4h point group symmetry
(I4/mmm space group), as illustrated in Fig. 3.4. It can be seen from Fig. 3.1 that
uranium sits at the border of locality and itinerancy in the Kmetko–Smith diagram,
thus showing a dual character of localization and itinerancy. While it is commonly
accepted that the uranium ions in URu2Si2 are in a mixed valence state between
tetravalent 5f 2 and trivalent 5f 3 configurations [33], recent resonant X-ray emis-
sion spectroscopic studies strongly suggest a predominant 5f 2 configuration [34].
This is also consistent with the results of DMFT+DFT calculation [35].

Notice, however, that the valence configuration does not directly imply the
locality or itinerancy of the 5f electrons at low temperature. As we have introduced
in the previous section, the local f orbitals can be delocalized through Kondo
hybridization, which conventionally assumes Krammers doublet ground state as in
the 5f 3 configuration. However, other less trivial versions of Kondo effect have
also been proposed in materials with even number of electrons, such as two channel
Kondo effects [37, 38]. URu2Si2 is believed to be one of these cases, where the
most probable atomic configuration is two electrons from the j = 5/2 spin–orbit
subshell, forming a multiplet of total angular momentum J = 4. This multiplet
further splits into 5 singlet states 2A1g ⊕A2g ⊕B1g ⊕B2g and 2 doublet states 2Eg

Fig. 3.4 Crystal structure of
body centered tetragonal
URu2Si2 in the paramagnetic
state. Lattice constants are
a = 4.124 Åand
c = 9.582 Å at low
temperature [36]

uranium

ruthenium

silicon
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Table 3.1 The crystal field
states of U-5f electrons with
two electrons in the angular
momentum j = 5/2 subshell,
categorized by irreducible
representation (IRR) of the
D4h group. These states have
total angular moment J = 4
and magnetic quantum
number Mj runs from
−4 · · · 4. The states on the
right hand side are labeled by
their Mj value, e.g.,
|0〉 ≡ |J = 4,Mj = 0〉

IRR state

A2g (	2) |A2g〉 = i√
2
(|4〉 − |−4〉)

A1g (	(1)
1 ) |A1g〉 = cos θ√

2
(|4〉 + |−4〉)

− sin θ |0〉
A1g (	(2)

1 ) |�〉 = sin θ√
2

(|4〉 + |−4〉)
+ cos θ |0〉

Eg (	(1)
5,1) |�〉 = cos φ |−3〉 + sin φ |1〉

Eg (	(1)
5,2) |�〉 = cos φ |3〉 + sin φ |−1〉

Eg (	(2)
5,1) |�〉 = sin φ |−3〉 − cos φ |1〉

Eg (	(2)
5,2) |�〉 = sin φ |3〉 − cos φ |−1〉

B1g (	3) |�〉 = 1√
2
(|2〉 + |−2〉)

B2g (	4) |�〉 = i√
2
(|2〉 − |−2〉)

under the tetragonal crystal electric field, as listed in Table 3.1. Note that fluctuations
into other atomic configurations such as different valence or even into j = 7/2
subshell remain finite at all temperatures, which greatly increases the complexity
and difficulty for a detailed theoretical description. Various versions of two channel
Kondo effect have been proposed within this crystal field scheme [35, 39, 40].

3.1.2 The Phase Diagrams of URu2Si2 and the Enigmatic
“Hidden Order”

Several reviews focused on the low temperature ordered phases in URu2Si2 have
already been available [32, 41–50]. More general review of “122 type” uranium
based heavy fermion systems is given in Ref. [51]. Ever since the first discovery
of this material, many PhD students have either focused on this compound or
included this as a major part of their thesis dissertation. The authors have partic-
ularly benefited from reading the dissertations of Collin Broholm [52], Jonathan
Buhot [53], Lance Cooper [54], Elena Hassinger [55], and Maxwell Shapiro [56].
In the following, we will limit ourselves to the introduction of properties and
experiments that we will later refer to in our Raman scattering study.

At room temperature, URu2Si2 is considered a bad metal, with conduction
band (CB) electrons scattering off uranium ions incoherently as suggested by
transport properties, which is quite conventional for a heavy fermion system
[Fig. 3.5] [57, 58]. The resistivity shows a slight upturn upon cooling in the high
temperature regime, followed by a drastic drop as the lattice coherence develops
and the 5f electrons hybridize with the conduction band, forming a heavy fermion
band [36]. The magnetic susceptibility along c-axis follows Curie–Weiss law down
to about 150 K, also showing a maximum around the same temperature as in
resistivity at about 70 K, marking the coherence temperature Tcoh [36].
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Fig. 3.5 (a and b) The specific heat data from Ref. [36] plotted as C/T vs. T 2. The λ-like
anomaly at 17.5 K is characteristic of a second order phase transition. (c) Magnetic susceptibility
from Ref. [36]. (d) Resistivity data from Ref. [57]

The Kondo hybridization and the formation of heavy bands are most clearly seen
in the optical conductivity measurements [59–61]. Figure 3.6 shows temperature
and frequency dependent optical conductivity data from Ref. [61]. Clear develop-
ment of a narrow Drude peak below 5 meV is observed below Tcoh (marked by the
red arrows) in the a-axis, followed by a suppression between 10 and 50 meV due to
the opening of hybridization gap.

Below a second order phase transition, URu2Si2 orders into two density wave-
like phases involving long range ordering of the uranium-5f electrons when a
critical parameter x is tuned [62], where x can be chemical substituent concentra-
tion [63, 64], pressure [65, 66], or magnetic field [67, 68]. We will denote the second
order transition temperature to be TDW(x) ≈ 18 K. We note that the transition
temperature for the special case of x = 0 is TDW(0) = THO = 17.5 K.

At x < xc, the system settles in the enigmatic “hidden order” (HO) phase
[Fig. 3.5] [36, 69, 70], which transforms into an unconventional large moment
antiferromagnetic (AFM) phase through a first order transition for x > xc [Fig. 3.7],
in which uranium atoms carry a magnetic moment of about 0.4 μB/U [66, 71]. The
moments are staggered along c-axis and are arranged ferromagnetically in-plane,
as determined by neutron scattering [72, 73] and resonant elastic X-ray scattering
(REXS) [74] [Fig. 3.8b].

It is deduced from C/T data that about 40% of the Fermi surface is gapped and
the entropy change is about 0.2R log 2 per uranium, which is an order of magnitude
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Fig. 3.6 (a) a-axis and (b) c-axis, optical conductivity data from Ref. [61]. The red and blue
arrows indicate the coherence temperature Tcoh and HO temperature THO , respectively. Enlarged
low temperature optical conductivity along (c) a-axis and (d) c-axis. The white dashed line shows
a BCS gap function with Tc = 17.5 K. Figure adapted from Ref. [61]

Fig. 3.7 (a) The pressure–temperature phase diagram for URu2Si2, adapted from Ref. [65].
The symbol “SC” stands for superconductivity, which is fully suppressed for ≥ Pc where
antiferromagnetism appears. (b) Magnetic entropy Smag versus ordered moment mord for several
uranium compounds, figure adapted from Ref. [41]. The broken line is a guide to the eye
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Fig. 3.8 The phase diagram of URu2Si2 system, where the black lines show the phase boundaries.
(a) The measurements on the iron substituted URu2−xFexSi2 crystals from neutron diffraction [80]
(blue triangle), electrical resistivity [63] (green square), magnetic susceptibility [63] (purple
triangle), and heat capacity [64] (yellow diamond) are overlaid with the neutron diffraction results
for URu2Si2 under hydrostatic pressure [65] (open square) to show the similarity between the two
tuning parameters. (b) The magnetic lattice structure in the ordered phases in URu2Si2, determined
by neutron scattering [73] and resonant elastic X-ray scattering (REXS) [74]. In the HO phase, the
local moment was determined to be less than 0.04 μB/U and in the pressurized AFM phase about
0.4 μB/U . But the magnetic structure is determined to be the same as illustrated here

too large to be explained by the small magnetic moment of about 0.04 μB per
uranium. Hall effect shows that carrier concentration decreased by about an order
of magnitude across the transition, while in-plane resistivity increased less than
10% [75].

Below 1.5 K, a superconducting state, which likely breaks time reversal symme-
try [76], emerges from the HO phase and is absent in AFM phase [Fig. 3.7] [65].
The HO and AFM phases are known to exhibit “adiabatic continuity” [77];
that is, both phases possess similar electronic properties [63, 78], and the Fermi
surface practically shows no change across the phase boundary [77]. Furthermore,
inelastic neutron scattering observed a dispersive collective excitation in the HO
phase [66, 73] and recently in the AFM phase of pressurized URu2Si2 [79]. This
raises the intriguing question of the symmetry relation between the two phases.
However, experimental progress is hindered due to inherent constraints of low
temperature pressurized experiments.

The availability of URu2−xFexSi2 crystals [63, 64] made it possible to perform
high resolution spectroscopic experiments at low temperature and ambient pressure
in both the HO and AFM phases. With increasing iron concentration, the a-axis
lattice constant decreases linearly while leaving the c-axis roughly unchanged [63].
Thus, iron substitution mimics the effect of applying small pressure or in-plane
stress on the URu2Si2 lattice, and the iron (Fe) concentration, x, can be approxi-
mately treated as an effective “chemical pressure” [63]. Recently, the phase diagram
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Fig. 3.9 Inelastic neutron scattering results at temperatures above and below the HO transition,
from Ref. [84]. (a) The excitation spectrum in the HO phase (data measured at 1.5 K, just above
the superconductivity) and (b) above the HO phase at 20 K. Notice the ungapped continuum of
excitations at incommensurate wave vectors at 20 K

of URu2−xFexSi2 single crystals has been determined [62, 64, 80–82], which
resembles the low pressure phase diagram of pristine URu2Si2 [32, 65] [Fig. 3.8].
The inelastic neutron scattering measurements again illustrate the analogies of the
AFM phase to the HO phase [82, 83], albeit differences remain relating to the
existence of the resonance in the AFM state of pressurized [79, 83] or Fe substituted
crystals [82].

In the paramagnetic phase above THO , inelastic neutron scattering (INS) detected
a continuous spectrum at incommensurate wave vector Q1 = (±0.6, 0, 0) [84]
[Fig. 3.9]. Below THO , this continuum is gapped at �1 = 4 meV, and another
excitation appears at commensurate wave vector Q0 = (1, 0, 0) with energy gap
�0 = 2 meV [72, 84, 85] [Fig. 3.9]. Application of hydrostatic pressure at low
temperature showed that the commensurate mode is fully suppressed in AFM state,
while the incommensurate mode hardens with increasing pressure [86]. Consistent
results were obtained from Fe substituted crystals [82, 83].

Particular caution should be taken here with the conventions of the ordering
vectors. Historically, the wave vectors of the high temperature BCT phase (the
structure lattice) were given in the units of the low temperature ST phase (the
density wave lattice) parameters, a = 4.13 Åand c = 9.58 Å. This was because of
the observation of a small magnetic moment staggered along c-axis, with ordering
vector (0, 0, π

c
) Å−1, as shown in Fig. 3.8b. In the reciprocal lattice units of the ST

phase, the ordering vector is written as (0, 0, 1). However, the structural Brillouin
zone (BCT) is twice the size of density wave Brillouin zone (ST), as clearly seen
in Fig. 3.10. That is, the ordering vector Q0 = (0, 0, 1) given in the ST reciprocal
lattice units would have been (0, 0, 1/2) if given in the structural lattice (BCT) units.

With the above clarification in mind, the “incommensurate” wave vector, Q1, is in
fact a high symmetry point of the BCT Brillouin zone. In the reciprocal lattice units

of the ST phase, �BCT ≡ (± 1
2 [1 + a2

c2 ] ≈ ±0.6, 0, 0), where a and c are lattice
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Fig. 3.10 Magnetic dispersion in HO phase (2.6 K) in (a) the ab-plane and (b) the ac-plane,
measured by inelastic neutron scattering (INS) [87]. The heavy solid lines show the Brillouin zone
boundaries of the high temperature paramagnetic body centered tetragonal (BCT) phase, where as
the dotted lines show the low temperature simple tetragonal (ST) phase. The reciprocal lattice unit
(r.l.u.) is given in the ST lattice parameters. (c) The BCT Brillouin zone, high symmetry points and
where the commensurate (green balls) and incommensurate (blue balls) excitations were observed

parameters of the ST phase. As evident from Fig. 3.10, (±0.6, 0, 0) would also
be equivalent to wave vectors such as (±0.4, 0, 1) in the second zone. Moreover,
in the BCT Brillouin zone, the high symmetry point Z ≡ (0, 0,±1) (given in
the reciprocal lattice units of the ST phase as before) is equivalent to (±1, 0, 0)

[Fig. 3.10].
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Scanning tunneling microscopy (STM) reported Fano interference pattern in the
differential conductance spectrum below 120 K and a 4–5 meV gap opening in the
HO state [26, 27].

Optical conductivity in a-axis and c-axis both showed a density wave-like energy
gap followed by a peak at about 65 cm−1 (8 meV), with BCS like temperature
dependence [Fig. 3.6] [59–61, 88, 89].

Early Raman work reported quasielastic scattering in the antisymmetric A2g

channel, probing pseudovector like chiral excitations, which was attributed to spin
fluctuations eventually condense to form the AFM phase [90]. As we explained
in Chap. 1, the Raman response in this symmetry channel is usually negligible in
materials without long range magnetic ordering. The fundamental reason is that
the electronic polarizability tensors associated with most common excitations, such
as phonons and plasmons, are symmetric with respect to reflections. However,
it has previously been experimentally identified in nonmagnetic heavy element
compounds due to crystal field excitations [91–93] and in some systems with exotic
electronic ground states [94–96].

Several theories have been suggested to explain the HO phenomena [32], includ-
ing the recently proposed hexadecapole order [35, 97], dynamical symmetry break-
ing [98, 99], E-type quadrupole order [100], rank-5 pseudo-spin density wave [101],
under-screened Kondo effect [49, 102], rank-5 multipole order [103], modulated
spin liquid [104], staggered spin–orbit order [105], and hastatic order [40, 106, 107].
Until now, there is still no consensus for the complete description of HO ground
state [43].

Raman scattering offers unique features in the investigation of manybody
quantum phenomena by simultaneously providing energy, symmetry, and lifetime
information of collective excitations. While the ultimate goal in solving the “HO
mystery” is to find the order parameter, answers to a few questions would have
greatly constrain the phase space for possible theories. One of the most important
questions is about the symmetry or symmetries that were removed at the phase
transition. A typical second order phase transition is related to a reduction of group
symmetry, which usually occurs through removing a combination of translation,
rotation, and time reversal symmetry operators.

3.2 Material and Methods

Preparation of high quality single crystals with controlled chemical compositions
has always been a critical factor for the understanding of physical phenomena and
reproducibility of experiments in condensed matter physics. This is particularly
important in the quest of the HO mystery due to the proximity of several electronic
phases at low temperature. Small amount of residual stress in URu2Si2 results
in puddles of antiferromagnetic regions in the crystal [71], leading to confusing
observations in the early years [32].
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At low temperature, the residual resistivity is dominated by the impurity or
defect scatterings in URu2Si2. Therefore the resistivity ratio between the room
temperature and the base temperature, ρRT /ρbase−T , also known as the residual
resistivity ratio (RRR), is often used as a characterization of crystal purity for
metallic compounds. It is known that the superconducting transition temperature
Tc in URu2Si2 is strongly affected by RRR [108, 109], not uncommon for nodal
superconductors [110, 111]. On the other hand, the dependence of RRR with the
HO transition temperature and the sharpness of the phase transition is much less
obvious [108, 109]. Recently, C4 symmetry breaking features were reported in the
HO phase only in the samples with highest RRR values [112, 113]. However, the
subtlety of these signatures seems inconsistent with the large entropy change and the
robustness of the HO phase transition. Therefore, the C4 symmetry breaking may
have been due to secondary effect of an (unknown) primary order parameter.

Traditionally, large single crystals were grown by the Czochralski pulling method
in the arc furnaces [36, 114]. In order to minimize the contribution from extrinsic
impurity phases, several improvements have been made. First, the starting uranium
has purity of only about 99.9% and is further purified by the so-called electro-
refinement method, i.e., solid state electrotransport method under ultrahigh vacuum
to remove trace amount of transitional metals such as iron and copper [115]. The
as-grown crystals using refined uranium by the Czochralski pulling method have
typical RRR over 10 and untraceable impurity levels [45]. The superconducting
transition temperature Tsc in these as-grown samples is typically less than 1 K. The
crystals are then followed by annealing process using the electro-refinement method
in high vacuum for over 10 days, which was shown to significantly increase the RRR
up to 1000 in some cases [116], and Tsc is increased to 1.5 K [109, 116].

3.2.1 Raman Studies

The URu2−xFexSi2 single crystals used in this monograph are grown by the
Czochralski method in a tetra-arc furnace in argon environment. The pristine
crystals were further post-processed by electro-refinement as described in Ref. [45,
108, 116] and were provided by Dr. Ryan E. Baumbach and Dr. Eric D. Bauer from
Los Alamos National Laboratory. The crystals with Fe substitution were provided
by Dr. Sheng Ran, Dr. Noravee Kanchanavatee, and Dr. M. Brian Maple from
University of California, San Diego. The quality of the synthesized single crystals
was confirmed by X-ray diffraction measurements.

The Raman scattering data shown in the following are all collected from the
ab-surface of URu2−xFexSi2 single crystals. Unless otherwise given, the Raman
data were acquired using 752.5 nm line of a Kr+ laser for excitation. The scattered
light was analyzed by a custom triple-grating spectrometer equipped with a liquid
nitrogen cooled CCD detector. The scattered light intensities were corrected for the
spectral response of the spectrometer and CCD. The laser spot size on the sample is
roughly 50 × 100 μm2. All temperatures shown in the following are corrected for
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Fig. 3.11 The character table for the point group D4h. The linear basis functions (x,y) and z
denote vectors in and out of the ab-plane, respectively. Similarly, (Rx ,Ry ) and Rz are pseudovectors
in and out of the ab-plane, respectively. The quadratic functions are also shown

laser heating. The power on the sample is about 10 mW for most temperatures and
kept below 7 mW for the lowest temperatures to reduce laser heating.

URu2−xFexSi2 single crystals have body centered tetragonal structure charac-
terized by the D4h point group symmetry (I4/mmm space group), as illustrated
in Fig. 3.4. In our measurements, we align the incident and scattered light along
the c-axis of the crystal. Thus, the electric field of light is in-plane and transforms
as the Eu irreducible representation of the D4h point group 3.11. Therefore, the
inelastically scattered light couples to excitations that transform as

Eu ⊗ Eu = A1g ⊕ A2g ⊕ B1g ⊕ B2g

irreducible representations. The basis functions of these representations are shown
in Fig. 3.11. The A2g symmetry channel is special in the sense that it only couples
to the pseudovector like excitations, forbidden for phonons.

The symmetry of excitations is selected through varying the experimentally
controlled combination of incident and scattered light directional vector and
polarization, called the “scattering geometry” [details in Sect. 1.3]. We adopt Porto’s
notation to indicate the scattering geometries, ki (eies)ks , where the directional
vector and polarization of incident (scattered) light are denoted by ki and ei (ks and
es), respectively. Since we are only using quasi-backscattering geometry, we omit
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the directional vector in the following. We use X, Y, X′, Y′, R, and L for shorthand
notations of ei and es . X=[100] and Y=[010] are aligned along crystallographic a-
axis, X′=[110] and Y′=[11̄0] are aligned 45◦ to the a-axis, and R=(X+iY)/

√
2 and

L=(X-iY)/
√

2 are right and left circularly polarized, respectively.
The measured spectral intensity in the eies scattering geometry, Ieies (ω, T ), is

related to the Raman response function, χ ′′
eies (ω, T ) ≡ Im[χeies (ω, T )], by the

following: Ieies (ω, T ) = [1 +n(ω, T )]χ ′′
eies (ω, T )+L(ω, T ), where χeies (ω, T ) is

the Raman susceptibility, n(ω, T ) is the Bose factor, and L(ω, T ) is a background
mainly resulting from luminescence of the sample.

We notice that other than the phononic contribution, the response in B1g and B2g

symmetry channels is the same and weakly temperature dependent. This suggests
that electronic Raman contributions in the B1g and B2g channels are negligibly
small, and the measured spectral intensity in RL scattering geometry, IRL(ω, T ) =
[1+n(ω, T )][χ ′′

B1g(ω, T )+χ ′′
B2g(ω, T )]+L(ω, T ), is predominantly contributed by

luminescent background. This background signal is very small in the near infrared
excitation and can be approximated as a small constant.

3.2.2 Characterization of Strain Free Areas

Due to the proximity of the HO and AFM phases [Fig. 3.7], any small strain field in
the crystal can induce small ∼50 nm size AFM puddles in the HO phase, which blurs
fine spectroscopic features coming from the HO phase. Therefore, it is important
not only to measure from a flat and clean surface as in most Raman scattering
experiments but also to measure from a strain free area. In our experiment, the ab-
plane residual resistivity ratio (RRR) for crystals from the same batch as used for
this Raman scattering study is over 300 [109]. The cleaved samples were examined
under a reflective Nomarski differential interference contrast (DIC) microscope to
find a stress free area for Raman study. Our spectrometer is equipped with a “behind
entrance slits” periscope as described in Sect. 2.1, which allows us to measure from
the exact same spot predetermined by the Nomarski microscope.

The reflective Nomarski DIC microscope is commonly used by the semicon-
ductor industry to optically image the surface roughness and defects [117]. In
comparison to the more common bright field microscopy, the microscopic lattice
deformation can be much more clearly distinguished in Nomarski DIC image [118]
and hence a sensitive tool for finding an optically flat and strain free area on
the crystal for Raman scattering studies. Figure 3.12 is a white light illuminated
Nomarski microscope image of URu2Si2 single crystal, glued on a copper sample
holder by epoxy and silver paint. The color gradients are proportional to the strain
gradients on the sample surface induced by defects, steps, and impurity centers. The
white arrows contrast two areas, both seem flat and featureless under bright field
microscopy, while Normarski microscope clearly shows detailed differences due to
minor crystal imperfections. The black rectangle is 100 by 200 μm, about twice the
laser spot size of our experiment. The magnetic inclusions are known to exist in
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Fig. 3.12 Nomarski microscope image of URu2Si2 single crystal glued on a copper sample holder
by epoxy and silver paint. The color gradients are proportional to the strain gradients on the sample
surface induced by defects, step, and impurity centers. The white arrows contrast two areas, both
seem flat and featureless under bright field microscopy. The gold wires are attached to the copper
holder by conductive silver paint

bulk URu2Si2 under very small pressure or stress [65, 66], and thus it is crucial to
study the intrinsic properties of the HO phase from a strain free area. The attached
gold wires are glued to the copper holder by conductive silver paint to improve the
thermal conductivity between the sample and copper holder.

3.3 Experiment and Results

Phase transitions are emergent phenomena in condensed matter materials that arise
due to interactions between large quantity of particles. Despite the astronomical
number of materials in this world, the “general behavior” of phase transitions is sur-
prisingly similar. Experimentally, phase transitions are associated with divergence
of some measurable quantity, such as heat capacitance, particle density, pressure, or
magnetization. The phenomena are so common in nature, yet the concept remains
one of the most puzzling fields in physics, and scientists are only starting to
understand them in the recent hundred years. Theoretically, phase transitions occur
as singularities in the partition function after taking the thermal dynamic limit [119].
Depending on the details of the singularity (or the way the measurable diverges),
phase transitions can be sorted into a few categories [120].
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In particular, a second order phase transition, e.g., ferromagnetic or supercon-
ducting transition, is associated with the emergence of an “order parameter” and
spontaneous symmetry breaking. Above the phase transition temperature, both
temporal and spatial short range fluctuations occur across the sample. Approaching
the transition temperature, the fluctuations experience “critical slow down” as both
the coherence time and length approach the thermal dynamic limit. Below the
transition temperature, the fluctuations are quenched as some long range ordering
form simultaneously and break the ground state symmetry of the high temperature
phase. In the language of group theory, at least one symmetry operator is removed
from the space group of the high temperature phase across a second order phase
transition. To quantify the phase transition, one defines a measurable quantity, i.e.,
the order parameter ψ , that is only nonzero below the transition temperature. The
Ginzburg–Landau free energy is then written as a function of ψ , and the thermal
dynamic quantities can be derived from the free energy [121].

While the ultimate goal is to write down the partition function (microscopic
theory) of a system, it is typical to use the Ginzburg–Landau theory for predicting
the measurable properties of the system. This is because the partition functions defer
from material to material, but the Ginzburg–Landau theory for a certain type of
transition, e.g., superconductivity, can be very general and applies to many similar
systems. In principle, infinitely many possible order parameters can arise due to a
certain symmetry breaking. However, real materials embody many constraints, such
as the lattice parameters and band structures, and therefore only allow a handful of
imaginable order parameters. Thus, knowing the broken symmetry in a second order
phase transition significantly reduces the complexity of the problem by constraining
the allowed order parameters.

In our experiment, we will focus on the determination of symmetry breaking in
the HO phase. Raman scattering is unique for simultaneously measuring the energy
and symmetry of collective modes at the Brillouin zone center. Therefore, we study
the Raman selection rules of two collective modes for determining the point group
symmetry in the HO phase. (1) The 163 cm−1B1g phonon mode, corresponding to
the lattice vibration of Ru atoms along c-axis and (2) a new mode of electronic origin
with A2g symmetry, which emerges only below the second order phase transition.
The B1g phonon is sensitive to the in-plane lattice C4 rotational symmetry breaking.
Furthermore, the Raman selection rule is capable of distinguishing the new Bravais
lattice being orthorhombic (D2h) or monoclinic (C2h). We will show our low
temperature data below and discuss in relation to the recent reports of C4 symmetry
breaking in the HO phase. The A2g collective mode is typically associated with the
magnetic Raman scattering [122]. Here, this mode is a new type of electronic Raman
excitation, for which we will explain its origin and significance. Most importantly,
by studying the Raman selection rules of this mode, we determine that the reflection
symmetry is broken in the HO phase.
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3.3.1 Phonon Modes

URu2Si2 crystallizes in the body centered tetragonal ThCu2Si2 structure type,
with space group I4/mmm (point group D4h). The material contains 5 atoms
in the primitive cell and therefore has a total of 15 phonon modes, with 3
acoustic (A2u+Eu) and 12 optical bands. The U, Ru, and Si atoms occupy the
2a, 4d, and 4e Wyckoff positions, respectively, and it can be determined from the
Bilbao crystallographic database that the optical phonons are half Raman active
(A1g+B1g+2Eg) and half IR active (2A2u+2Eu) [123, 124] (Fig. 3.13). The atomic
displacements of each optical phonons are shown in Fig. 3.14, reproduced from
Ref. [125]. We can see that the A1g and B1g phonons only involve the vibration
of Si and Ru atoms, respectively. The role played by the lattice degrees of freedom
has been studied by Raman scattering in the very early days of URu2Si2 [90]. It
was concluded that the A1g phonon intensity shows anomalous increase at low
temperature, which may suggest strong electron–phonon coupling.

Recently, a detailed study of the lattice degrees of freedom from 2 to 300 K has
been done by Raman scattering, IR spectroscopy, inelastic neutron scattering, and
ab initio DFT calculations [125]. The study reproduced the anomalous temperature
dependence of the A1g phonon found in Ref. [90] and also reported a small
energy softening of the B1g phonon below about 100 K. The authors of Ref. [125]
suggested a tendency toward lattice instability with orthorhombic distortion below
100 K, which is possibly related to the observation of a “pseudogap” in the Eg

channel [126]. However, Ref. [125] found no phononic anomaly anywhere in the
BZ across the HO transition. This study thereby put a strong constraint on the
theoretical models explaining the HO phase transition, such that the order parameter
must not couple to the lattice or at least couple in a manner that the phonons remain

Fig. 3.13 A table of the IR
and Raman active phonons
(acoustic modes not
included), given the Wyckoff
positions of the crystal
structure of URu2Si2,
determined from the Bilbao
crystallographic
database [123, 124]
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Fig. 3.14 The atomic displacement of the IR and Raman active phonons, where the arrows
indicate the relative motions in a frozen time frame. Figure adapted from Ref. [125]

unaffected (energy, lifetime, and intensity) even with the strong electron–phonon
couplings.

Figure 3.15 plots the Raman response function in the XX scattering geometry
at 7 K, containing the B1g phonon centered at 20 meV. In general, the phonon
width is composed of its decay rate and inhomogeneous broadening due to stress
field [125, 127]. Hence, the phonon width at low temperature is an indication of
crystal quality. It has been demonstrated that stress field on the sample induces local
AFM domains[32, 128]. Here, the deconvoluted full-width-at-half-maximum of the
B1g phonon is about 0.1 meV, smaller than the values reported elsewhere for this
material[125, 127], indicating that the measured surface is single domain and stress
free as it is required to study the symmetry of the order parameter in the HO phase.

Recently, a small lattice distortion was discovered by X-ray diffraction [129],
where the observed orthorhombicity is 6.2 × 10−5. In general, the broken fourfold
rotational symmetry allows the B1g phonon at 20.0 meV to leak into other channels.
As illustrated in Fig. 3.15, the B2g type lattice distortion reported in Ref. [129]
would leave X and Y no longer aligned with crystallographic axes, leading to
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Fig. 3.15 (a) The Raman active B1g phonon measured at 7 K in XX and XY scattering geometries
and (b) in X′X′ and X′Y ′ scattering geometries. The data were taken from the same surface as the
rest of data presented in this report. The red curve is a fit of the Raman response function (a) in XX
and (b) in X′Y ′, scattering geometry (solid squares) containing the B1g phonon, whereas the pink
line is a fit to the Raman response function (a) in XY and (b) in X′X′, scattering geometry (open
circles) containing no phonon. The deconvoluted full-width-at-half-maximum of the B1g phonon is
about 0.1 meV, close to resolution limitation of the instrument. There is no observable B1g phonon
leakage into other symmetry channels at 7 K, where a 5% phonon intensity is shown as guide to
the eye (blue dashed line). The instrumental resolution is shown in the upper-left corner

intensity leakage of the B1g phonon into the XY channel. However, within the
experimental accuracy, no such orthorhombicity induced phonon leakage was
observed in our data [Fig. 3.15a]. The absence of the phonon leakage is consistent
with the tininess of the orthorhombicity observed by X-ray diffraction.

Similar argument can be extended to B1g type of lattice distortion, which would
allow finite intensity in the otherwise forbidden geometry X′X′. We also did not
observe such feature experimentally [Fig. 3.15b]. The s/n of the data allows us to
confidently rule out any C4 breaking lattice distortion (orthorhombicity) in the ab-
plane larger than 5%.

3.3.2 Raman Response in the A2g Symmetry Channel

In Fig. 3.16, we plot the Raman response in the chiral A2g channel where the
most significant temperature dependence was observed. We show that χ ′′

A2g(ω, T )

displays enhancement of quasi-elastic scattering upon cooling.
At high temperatures, the Raman spectra exhibits a Drude line shape,

χ ′′
A2g(ω, T ) ∼ ω	(T )

ω2+	2(T )
, which in Ref. [90] was attributed to quasi-elastic

scattering. The Drude line shape is due to incoherent scattering from the uranium
crystal field states, and the maxima energy 	(T ) reflects the scattering rate or the
inverse quasiparticle lifetime. As temperature decreases, the coherent scattering
leads to longer quasiparticle lifetime, thus decreasing 	(T ). Below 70 K, the line
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Fig. 3.16 The A2g Raman response function decomposed from the spectra measured in the XY,
X′Y ′, and RL scattering geometries. The solid lines are guide to the eyes illustrating the narrowing
of the Drude function[90, 130]: χ ′′

A2g(ω, T ) ∼ Im
[

ω
ω+i	(T )

]
, where 	(T ) is the Drude scattering

rate (indicated by the arrows), which decreases on cooling. Below 70 K, the Raman response
deviates from the Drude function. Below THO, the Raman response shows a spectral weight
suppression below 6 meV and the appearance of an in-gap mode at 1.6 meV (7 and 13 K)

shape deviates slightly from the Drude function, tracking the formation of the
heavy fermion states by the hybridization of the itinerant conduction band and the
U-5f states. In Fig. 3.16, the maximum in the Raman response function decreases
from 5 meV at room temperature to 1 meV just above THO, reflecting the dramatic
increase of the quasiparticle lifetime.
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Further analysis of data in Fig. 3.16 by doing Krammers–Kronig transformation,

χ ′
A2g(0, T ) = 2

π

∫ 25 meV

0

[
χ ′′

A2g(ω, T )

ω

]
dω, (3.4)

reveals a striking resemblance between the Raman susceptibility in the A2g channel,
χ ′

A2g(0, T ), and the magnetic susceptibility. Figure 3.17 displays a comparison
between χ ′

A2g(0, T ) (left axis) and the c-axis static magnetic susceptibility χm
c (T )

(right axis), showing that the responses are proportional to each other at tempera-
tures above THO.

Figure 3.18 shows the comparison between χ ′
A2g(0, T ) and χm

c (T ) for a different
iron concentration x in URu2−xFexSi2 [64]. While there are discrepancies around
the maxima at about 50–100 K, both quantities follow the same Curie–Weiss-like
temperature dependence above about 100 K, followed by a suppression approaching
the second order phase transition.
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Fig. 3.17 Temperature dependence of the static Raman susceptibility in A2g channel:

χ ′
A2g(0, T ) = 2

π

∫ 25 meV
0

[
χ ′′

A2g(ω,T )

ω

]
dω (red dots), and the static magnetic susceptibility along

c-axis and a-axis from Ref.[36] is plotted as blue squares and black circles, respectively. THO is
marked by the dashed line
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Fig. 3.18 The static Raman
susceptibility in the A2g

symmetry channel (open
squares) χA2g(0, T ),
compared with the magnetic
susceptibility with field
applied along the c-axis [64]
(solid line)
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The Curie–Weiss-like behavior above 100 K in static magnetic [64, 131] and
Raman susceptibilities [1, 90, 132] suggests A2g pseudovector-like instabilities at
low temperature. Below about 50 K, the Kondo screening begins setting in [32,
59, 89, 131, 133] and the correlation length of the HO [134] or AFM [65, 128]
phase builds at the ordering vector Q0 = (0, 0, 1); therefore, both the magnetic and
Raman uniform susceptibilities start to decrease [Fig. 3.18]. Close to the transition
temperature, both the HO and AFM order parameters fluctuate regardless of the low
temperature ordering. However, the static magnetic susceptibility at Q0 diverges
only across the PM–AFM phase transition [65, 80], whereas it becomes “near
critical” from the PM-HO phase [134]. Thus, HO is a nonmagnetic transition,
but there is the “ghost” of AFM present. Here, we find that the temperature
dependencies of the static A2g Raman susceptibility χA2g(0, T ) are similar and
track χm

c (T ) in all measured samples.
Below THO = 17.5 K, the A2g Raman response function shows suppression of

low energy spectral weight below 55 cm−1 (6.8meV) and the emergence of a sharp
in-gap mode centered at 13 cm−1 (1.6 meV) [Fig. 3.16]. The temperature evolution
of the gap and in-gap mode is most clearly seen in the colored intensity plot,
where a mode at 1.6 meV appears sharply below THO without much temperature
dependence [Fig. 3.19]. The low energy spectral weight gap suppression roughly
follows Bardeen–Cooper–Schrieffer (BCS) gap function (white line in Fig. 3.19).
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Fig. 3.19 Temperature
dependence of the low
frequency Raman response in
the XY scattering geometry,
dominantly comprised of A2g

excitations. The colors are
coded in logarithmic scale. A
gap-like suppression develops
on cooling, and an in-gap
mode at 1.6 meV (black
dashed line) emerges below
THO. The white line shows
the temperature dependence
of the BCS gap function
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3.3.3 The Reflection Symmetry Breaking in the “Hidden
Order” State

Figure 3.20 shows the Raman response in six scattering geometries at 7 K. The six
scattering geometries are denoted as esei =XX, XY, X’X’, X’Y’, RR, and RL, with
ei being the direction vector for incident light polarization and es being the scattered
light polarization. X=[100] and Y=[010] are aligned along crystallographic axes,
X’=[110] and Y’=[11̄0] are at 45◦ to the a-axis, and R=(X+iY)/

√
2 and L=(X-

iY)/
√

2 are right and left circularly polarized light, respectively.
The intense in-gap mode is observed in all scattering geometries containing A2g

symmetry. In the most naive sense, the mode can be interpreted as a ω0 = 1.6 meV
resonance between two quasi-localized crystal field states, which have symmetry
difference of A2g , e.g., between |A1g〉 and |A2g〉 states [132]. However, crystal
field excitations in heavy element compounds appear gradually with decreasing
temperatures [92, 93]. The abrupt appearance of the mode below the phase transition
temperature is highly unusual for a crystal field excitation. We will explain the origin
of this mode in the next section.

The most interesting and important feature in Fig. 3.20 is a much weaker intensity
observed at the same energy of the A2g mode in XX and X′X′ geometries, containing
the excitations of the A1g symmetry.

The data are fitted to a Lorentzian centered at 1.6 meV (convoluted by instru-
mental resolution). The intensities can be separated into distinct symmetry channels,
IA2g = (IXY + IRR − IX′X′)/2 = 2.6±0.1, IA1g = (IX′X′ + IRR − IXY)/2 = 0.7±0.1,
IB1g = (IX′Y′ + IXX − IRR)/2 = 0.3 ± 0.1, and IB2g = (IX′X′ + IXY − IRR)/2 =
0.1 ± 0.1. Hence, the intensity ratio of A1g to A2g channels is 25 ± 3%, B1g to A2g

channels is 11 ± 3%, and B2g to A2g channels is 3 ± 3%.
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Fig. 3.20 The Raman response function in six scattering geometries at 7 K. The arrows in each
panel show the linear or circular polarizations for incident (blue) and scattered (red) light. The
irreducible representations for each scattering geometry are shown within the D4h point group.
The data are shown in black circles, where the error bars show one standard deviation. The red
solid lines are fits of the in-gap mode to a Lorentzian, and the fitted intensity using the method of
maximum likelihood is noted in each panel. The full width at half maximum of the in-gap mode is
about 0.3 meV at 7 K (instrumental resolution of 0.17 meV is shown in the XY panel)

Therefore, we claim the observation of the 1.6 meV mode dominantly presenting
in the A2g symmetry channel with a weaker intensity “leakage” into the A1g

symmetry channel in the HO phase. Similarly, the small intensity in the B1g channel
could also be interpreted as small “leakage” of the collective mode from A2g

channel. However, the intensity borders on the noise level, and we do not intend
to claim any observation in B1g or B2g channel.

The selection rules between scattering geometries and symmetries of Raman
response are governed by the Raman tensors [Sect. 1.3] and summarized in
Table 3.2. At the 	 point, collective modes have definite symmetries and therefore
do not appear in more than one symmetry channel. However, due to spontaneous
symmetry breaking, the point group symmetry of the system is reduced, and it is
possible that one collective mode “leaks” into more than one symmetry channel.
For example, upon the reduction of symmetry from point group D4h to C4h, the
A1g and A2g irreducible representations merge into Ag , B1g and B2g merge into
Bg , and Eg remains doubly degenerate [137]. Thus, a collective mode with “pure”
A2g symmetry of D4h group should only appear in XY , X′Y ′, and RR scattering
geometries. But in the lower symmetry C4h point group, there is no A2g irreducible
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Table 3.2 The Raman
selection rules of
URu2Si2 [135, 136]. Upon
the reduction of symmetry
from point group D4h to C4h,
the A1g and A2g irreducible
representations merge into
Ag , B1g and B2g merge into
Bg , and Eg remains doubly
degenerate [137]

Scattering Irreducible representations

geometry (D4h) (C4h)

RR A1g + A2g Ag

RL B1g + B2g Bg

XX A1g + B1g Ag + Bg

YX A2g + B2g Ag + Bg

X′X′ A1g + B2g Ag + Bg

Y ′X′ A2g + B1g Ag + Bg

Character
table

T > THO
(D4h group)

T < THO
(C4h group)
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Fig. 3.21 The character tables for the point group D4h and C4h, showing only parity even
irreducible representations

representation any more. The previous A2g of D4h group is now reduced to Ag in
C4h group, which appears in all but RL scattering geometry in Table 3.2. Comparing
the selection rules of C4h group to Fig. 3.20, one can easily see that the symmetry
properties of the collective mode are entirely consistent with C4h point group. In
fact, C4h is the only point group consistent with our data.

Comparing the character tables (showing only parity even irreducible represen-
tations) for the point group D4h and C4h in Fig. 3.21, we see that the reflection
symmetry operators, σd and σv (equivalently the out-of-plane rotation operators C′

2
and C′′

2 ), have to be removed from the D4h group. In other words, the local vertical
and diagonal reflection symmetry operators at the uranium sites have to be removed.
Therefore, the conclusion from the data shown in Fig. 3.20 is that the reflection
symmetries are broken in the HO phase.

The tiny intensity leakage into the RL scattering geometry measures the strength
of orthorhombic distortion caused by broken fourfold rotational symmetry. How-
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ever, the signal in the RL geometry borders on the noise level and therefore is at
most a subdominant order parameter induced by the broken reflection symmetries.

3.3.4 Iron Substitution Dependence of the A2g Collective Mode

Albeit the distinct discrete symmetries are broken above and below the critical
concentration xc, we find that the A2g collective mode continuously evolves with
parameter x. In the HO phase, the mode energy decreases as x is increased,
disappearing at the critical Fe concentration xc. In the AFM phase, the collective
mode again emerges in the same A2g symmetry channel with the energy increasing
with x. The continues transformation of this collective excitation, a photoinduced
transition between the HO and AFM electronic phases, provides direct experimental
evidence for a unified order parameter for both nonmagnetic and magnetic phases
arising from the orbital degree of freedom of the uranium-5f electrons.

Figure 3.22 shows the temperature dependence of the Raman response in the
eminent A2g symmetry channel of the D4h group. The upper panels of Fig. 3.22
show the intensity plots of the low energy Raman response χ ′′

A2g(ω, T ) below 30 K.
Above TDW(x) at about 18–20 K, a quasi-elastic peak (QEP) comprises most of
the spectral weight for all samples, narrowing toward the transition. The observed
QEP originates from overdamped excitations between quasidegenerate crystal field
states [1, 35], and the narrowing of the QEP with cooling is due to the increase of
excitation lifetime, related to the development of a hybridization gap and formation
of a heavy Fermi liquid [59–61]. Our data show that this process is similar for both
pristine and iron doped samples, regardless of the low temperature ordered phase
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Fig. 3.22 Raman response in the A2g symmetry channel, χ ′′
A2g(ω, T ), for URu2−xFexSi2 below

the second order phase transition temperature. The upper panels show intensity plots, where the
intensities are color coded in logarithmic scale. The lower panels show the spectra at about half
the transition temperature to emphasize the collective mode, where the error bars represent one
standard deviation, and the red solid lines are guides to the eye
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being HO or AFM phase. This indirectly shows that the Kondo hybridization cannot
be a critical ingredient for distinguishing HO from AFM phase.

Below TDW(x), the most significant feature in the A2g channel is a sharp collec-
tive mode. The sharpness of this resonance suggests the lack of relaxation channels
due to the opening of an energy gap [59, 61, 62, 89]. In order to see the mode’s
lineshape more clearly, we plot χ ′′

A2g(ω, T ) for each Fe concentration x in the lower
panels, with T ≈ TDW(x)/2. The lineshapes broaden with increasing x owing to
the inhomogeneity of the local stress field, or unsuppressed relaxation channels
introduced by doping that interact with the collective mode, which may also be
related to the increasing continuum in the x = 0.15 and 0.2 spectra. In contrast to the
monotonic broadening of the lineshape width, the collective mode frequency shows
nonmonotonic behavior as function of x. The energy decreases with increasing x

in the HO phase, until it vanishes below the instrumental resolution at x = 0.10,
which is close to the HO and AFM phase boundary determined by elastic neutron
scattering [80] and thermal expansion measurements [64]. The mode reappears in
the AFM phase, where the energy increases with increasing x, and also appears in
the same A2g symmetry channel as in the HO phase.

3.3.5 Excitation and Sample Dependence

Figure 3.23a shows Raman response in the X′Y ′ scattering geometry in the
HO phase, measured with different excitation energies at about 8 K. All spectra
were normalized by laser power, spectrometer response, and corrected for optical
constants obtained from Ref. [61] [Chap. 2]. We demonstrate that the collective
mode and the background have very different excitation profile as the conventional
phonon. Figure 3.23b plots the integrated intensity of the A2g collective mode (red)
and the B1g phonon (black) as function of excitation wavelength. The B1g phonon
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Fig. 3.23 (a) Low frequency secondary intensity in the X′Y ′ scattering geometry, measured
with different excitation energies in the HO phase (about 8 K). This includes contribution from
both Raman response and photoluminescence background. All spectra were normalized by laser
power, spectrometer response, and corrected for refractive index. (b) Integrated intensity of the
A2g collective mode (red) and the B1g phonon (black) as function of excitation wavelength. Error
bars are shown for one standard deviation
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Fig. 3.24 (a) The a-axis optical conductivity of URu2Si2 from infrared to ultraviolet, measured
at 300 K, from Ref. [61]. (b) Enlarged from panel (a) in the visible range between 1.6 and 2.4 eV

intensity seems to peak at around 2.2 eV, as reported in the dissertation of Dr. Buhot
[Fig. 4.19 in Ref. [53]]. This may be due to the resonance enhancement from an
interband transition, as suggested by the optical conductivity in Fig. 3.24 [61].

The A2g collective mode has however a different profile, where the intensity is
peaked at slightly longer wavelength than 676 nm. Notice that the spectrometer and
CCD response is about 5 times larger around 550 nm than in 750 nm. Therefore
despite the slightly larger signal in the NIR regime, the required spectra collection
time is actually longer than 500–600 nm excitations. In most Raman experiments,
one is usually tempted to pick the excitation where the signal (before normalizing to
spectrometer and detector response) is the strongest. However, for the data analysis
we employ here for URu2Si2, it is also important to minimize the photoluminescent
contribution to the scattering cross section. For example, the Krammers–Kronig
analysis applies to linear susceptibility functions, and therefore the photolumi-
nescent background needs to be subtracted before the transformation. However,
any subtraction of background introduces uncertainties, rendering the Krammers–
Kronig analysis pointless if signal becomes comparable to the background. In
fact, even by adjusting a simple linear background, one can get almost any
temperature dependence for the “static susceptibility.” Moreover, the analysis of
“gap suppression” is meaningless unless either the luminescence background is
known, or the background is negligibly small. In reality, the luminescent background
has no reason to be linear or even any simple analytic function.

Unfortunately, it can be seen in Fig. 3.23a that the broad continuum has yet
another excitation dependence different from the A2g signal, peaking at around
568 nm. This broad background extends to much higher energies and is therefore
assigned to be mainly due to photoluminescence, and it should be subtracted from
the intensity before calculating Raman response. However, it must be emphasized
here that there is no way to distinguish Raman response from photoluminescence
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Fig. 3.25 Temperature
dependence of the low
frequency Raman response in
the XY scattering geometry,
taken from a different sample
than in Fig. 3.19 and
measured with 647 nm
excitation. The colors are
coded in logarithmic scale
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for such broad continuum. Therefore, in our study [1, 138], we do the experiment
with 752 nm excitation from Kr+ ion laser, which contains minimal background.

Another challenging aspect of this study is to find a good sample and a good
cleave. The residual resistivity ratio (RRR) from different batch of URu2Si2 crystals
can differ from 20 to 700, likely due to varying degree of impurity concentrations
and crystalline homogeneity [109]. Although the varying RRR does not greatly
modify the HO temperature, it will likely introduce different inhomogeneous
broadening in all spectroscopic features, such as phonons and collective modes.
Figure 3.25 shows the temperature dependence of the low frequency Raman
response in the XY scattering geometry, measured from a batch of samples with
lower RRR. The RRR in this batch of samples ranges between 50 and 200, which
is consistently lower compared to another batch of samples with RRR ≈200–
600, where Fig. 3.19 was measured from. In all measured sample batches, THO

is characterized by transport measurements and consistently found at 17.5 K.
Compared to Fig. 3.19, we first notice that the A2g collective mode in Fig. 3.25

appears at significantly lower temperature, about 8 K. Surprisingly, the temperature
dependence of the gap suppression is still consistent with THO characterized
by transport measurements, indicating that the laser heating has been correctly
accounted for in both figures. Also, the FWHM (deconvoluted for the instrumental
resolution) of the A2g peak is about 0.7 meV at 7 K, which is much broader than
about 0.4 meV found in samples with higher RRR. Therefore, the reason for the
seemingly weaker A2g peak is likely just due to the inhomogeneous broadening. In
fact, we found that the integrated intensity of the A2g peak is roughly the same in all
samples, resulting the peak height in low RRR samples to be much lower, hindering
us to distinguish it from noise background. Another possible aspect is that Fig. 3.25
was measured with 647 nm, which has slightly higher background than in 752 nm,
introducing higher uncertainty in background subtraction.

In all measured samples from three different sources, grown by the Czochralski
method with and without electrorefinement, and also samples grown by molten
indium flux method, we consistently find the A2g peak to saturate at 1.6–1.7 meV in
low temperature. On the other hand, we find that the FWHM of the peak fluctuates
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between samples and even slightly varies for different spots on the same cleave. On
average, we find the FWHM roughly between 0.4 and 0.5 meV in high RRR samples
and about 0.7 meV in low RRR samples. In all measured samples, the phonon width
is close to instrumental resolution limited and therefore cannot serve as a reliable
standard for sample quality.

3.4 Discussion

We now discuss the origin and the observed doping dependence of the collective
mode in the ordered phases within a phenomenological Ginzburg–Landau approach,
based on a minimal model where the two order parameters for both HO and AFM
phases can be constructed from |A2g〉 and |A1g〉 [35, 97]. This model has recently
been directly confirmed by experiments using inelastic X-ray scattering [139–141]
and resonant ultrasound spectroscopy [142].

3.4.1 The Minimal Model and the Hexadecapole Order
Parameter

For low energy spectroscopy, it is sufficient to introduce a minimal model containing
the two lowest energy states in Table 3.1, |A2g〉 and |A1g〉, separated by a small
energy ≈ 30 cm−1. From this minimal model, Haule and Kotliar proposed an
A2g type local interaction operator, �(r) ≡ V 〈|A1g〉 〈A2g|〉r , with V being
the interaction strength, and r is the lattice site [35]. This is a complex order
parameter, where the real part is responsible for the condensation in the HO
phase, and is proportional to the electric hexadecapolar order parameter: �HO ∼
〈(JxJy + JyJx)(J

2
x − J 2

y )〉 ∼ 〈J 4+ − J 4−〉. A hexadecapolar order parameter breaks
the reflection symmetries but does not couple to the lattice directly (in the first
order), and thus no lattice distortion (such as C4 symmetry breaking) is expected. It
was pointed out in Ref. [143] that the A2g local order parameter and the antiferro-
staggering along c-axis with ordering vector QDW = (0, 0, c

2π
) lower the group

symmetry from the high temperature I4/mmm (No. 139) to P 4/mnc (No. 128).
This A2g hexadecapolar order parameter alone cannot explain the C4 rotational

symmetry breaking observed in magnetic torque [112], X-ray diffraction [129], and
elastoresistivity [113] experiments. However, notice that external magnetic field or
strain can induce small C4 symmetry breaking as explained in Ref. [143] from sym-
metry arguments or in Supplementary Materials in Ref. [1] from direct calculations
by involving a small subdominant order parameter of different symmetry (B1g was
included for example).

Consider now the minimal model introduced above and the low energy sector
of the purely real hexadecapolar order parameter, which is appropriate for the low
energy spectroscopy. We can write an effective Hamiltonian as
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H0 |A2g〉 |A1g〉
|A2g〉 0 V sin θ

|A1g〉 V sin θ ω0

(3.5)

where |A2g〉 = i√
2
(|4〉−|−4〉) with A2g symmetry and |A1g〉 = cos θ√

2
(|4〉+|−4〉)−

sin θ |0〉 with A1g symmetry are the singlet crystal field states of the U-5f electrons.
Notice that we have absorbed the sin θ factor into V in the main text.

From perturbation theory, the perturbed states up to second order in V are

|HO〉 =
(

1 − V 2 sin2 θ

2ω2
0

)
|A2g〉 + V sin θ

ω0
|A1g〉 + O(V 3)

|	〉 = −V sin θ

ω0
|A2g〉 +

(
1 − V 2 sin2 θ

2ω2
0

)
|A1g〉 + O(V 3),

(3.6)

where |HO〉 is the HO ground state, and |	〉 (reads “veht”) is the first excited state.
Notice that V can take up positive or negative values. In the following, we will

use the notation:

|HO+〉 =
(

1 − V 2 sin2 θ

2ω2
0

)
|A2g〉 + |V | sin θ

ω0
|A1g〉 + O(V 3)

|HO−〉 =
(

1 − V 2 sin2 θ

2ω2
0

)
|A2g〉 − |V | sin θ

ω0
|A1g〉 + O(V 3)

(3.7)

to distinguish the right- and left-handed states.
The mixing between |A2g〉 and |A1g〉 states by the hexadecapolar order parameter

in HO phase is illustrated in Fig. 3.26. The resulted two states, |HO+〉 and |HO−〉,

Fig. 3.26 The formation local chiral states, |HO+〉 and |HO−〉, in the HO phase due to reflection
symmetry breaking and an A2g type local interaction. The illustrations are meant to emphasize the
symmetry of the wave function, where red and blue are positive and negative phases
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cannot be transformed into one another by any remaining C4h group operators. In
particular, the two states are related to each other by a mirror reflection with an
additional sign change: a property known as chirality (or handedness). The choice
of either the right-handed or the left-handed state on a given uranium site, |HO+〉 or
|HO−〉, defines the local chirality in the HO phase. Notice that these two degenerate
states preserve the time reversal symmetry, carry no spin, and contain the same total
charge but differ only in charge distribution, thus “hidden” from most experimental
probes for decades.

3.4.2 The Ordering Vector

As we explained in Sect. 3.1, the order parameter was historically “believed” to
be staggered in HO phase along Q0 = (0, 0, 1) due to observation of a weak
magnetic Bragg peak [73, 74]. However, since the magnetic feature is now attributed
to extrinsic reasons, the question of whether translational symmetry being broken
or not is back on the table. In particular, if the ordering is truly magnetic and along
Q0 as shown in Fig. 3.8b, then one would expect certain periodicity of the magnetic
dispersion. That is, the Z point of the BCT zone (±1, 0, 0) will become the 	 point
(0, 0, 0) in the HO phase [Fig. 3.10]. Also, the � point of the BCT zone (±0.6, 0, 0)

should be equal to (±0.4, 0, 0) in the ordered phase. However, the inelastic neutron
scattering results show that both magnetic and lattice excitations (phonons) obey the
structural lattice periodicity (BCT zone) in the HO phase [87].

The Brillouin zone folding predicted for an ordering vector Q0 was recently
observed in the HO phase by angle resolved photoemission spectroscopy
(ARPES) [144]. The electronic band periodicity changes from BCT in the
paramagnetic phase into ST in the HO phase, suggesting the formation of some
density wave. The observed density wave gap ∼ 7 meV is consistent with the
optical conductivity results [88], and the estimated gapping of density of states at
Fermi surface could account for the entropy lost measured by heat capacitance.
Thus, it seems clear that the ordering is electronic origin and does not break the
lattice periodicity.

Besides the ARPES results [144], we show in the following that the Raman
spectroscopy results also suggest ordering along Q0 (Fig. 3.27).

Detailed studies of the temperature dependence of the energy and FWHM of
the 1.6 meV sharp A2g mode by Buhot et al. [132], and its comparison to the
collective mode observed by inelastic neutron scattering at Q0 [85], revealed that
the two modes measured at very different crystal momentum is likely the same
mode. This is a “smoking gun” evidence of unit cell doubling along c-axis, i.e.,
the ordering vector is indeed Q0 = (0, 0, 1) as in the AFM phase. Thus the HO
ground state is the staggering of local symmetry breaking order parameters, forming
“some kind” density wave as suggested by infrared spectroscopy [88] and ARPES
measurements [144].
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Fig. 3.27 The comparison between the A2g collective mode in Raman scattering and Q0 mode
in inelastic neutron scattering, adapted from Ref. [132]. The figure compares the temperature
dependence of the energy and FWHM of the A2g Raman peak (full symbols) and the Q0 mode
measured by inelastic neutron scattering (open symbols) [85]. The full symbols (stars, triangle, and
square) are extracted from various measurements on different samples from the same batch. The
gray area corresponds to the temperature range of the HO phase

However, detailed studying of phonon branches by inelastic neutron scattering
showed that within experimental sensitivity no evidence of translational symmetry
breaking in any direction is observed [87]. This means that the long range ordered
HO ground state does not induce any periodic lattice distortion, which is a very
strange case since the phononic thermal conductivity [145] and linear thermal
expansion coefficients [64] all show drastic change across the HO phase transition.
In conclusion, the HO ground state must be an electronic ordering, which although
couples strongly to lattice, and does not induce lattice distortion.

The most intuitive explanation to reconcile the above experiments would be to
have c-axis staggering of an electric multipolar order parameter, which breaks the
reflection symmetries on uranium sites, but does not induce any lattice distortion.
Within the crystal group of URu2Si2, a hexadecapole (rank 4 electric multipole) is
the choice in the lowest order. Notice that the interaction between rank 4 multipoles
is not necessarily weak. For example, dotriacontapole (rank 5) is the dominant
interaction in PrO2, even stronger than dipoles [6].
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3.4.3 The χ ′′
A2g(ω, T ) Continuum

The Raman response above THO can be described within a low energy minimal
model suggested in Ref. [35] that contains two singlet states of A2g and A1g

symmetries, split by an energy ω0. In the following, we denote the singlet states
of A2g and A1g symmetries by |A2g〉 and |A1g〉; the conduction band is labeled
|CB〉. At high temperatures, the crystal field states are quasidegenerate in energy
and localized at the uranium f shells in space. The incoherent excitation between
the two states thus leads to a broad Drude like quasi-elastic peak as in Fig. 3.16,
where the inverse excitation lifetime determines the peak maxima 	(T ).

The proportionality between χ ′
A2g(0, T ) and χm

c (0, T ) in Fig. 3.17 can be
understood by noting that both susceptibilities probe A2g excitations [Fig. 3.11].
This is because the Raman susceptibility in A2g channel can be expressed by

χA2g
(ω) ∝

∫
〈OA2g

(τ )O
†
A2g

(0)〉eiωτ dτ, (3.8)

where OA2g
is the Raman operator in the A2g channel. The magnetic susceptibility

along z-axis is

χm
z (ω) ∝

∫
〈Jz(τ )Jz(0)〉eiωτ dτ. (3.9)

Here, Jz can be approximated by the orbital angular momentum operator Lz. Notice
that OA2g

and Lz both couple to wave functions that transform as A2g representation
in D4h group and thus differ only in the structure of the bare vertex. Therefore, we
have the following relations:

〈A2g|OA2g
|A2g〉 = 〈A2g|Jz|A2g〉 = 0

〈A1g|OA2g
|A1g〉 = 〈A1g|Jz|A1g〉 = 0

〈A1g|OA2g
|A2g〉 = β 〈A1g|Jz|A2g〉 = iα

〈CB|OA2g
|A2g〉 = β ′ 〈CB|Jz|A2g〉 = iα′,

(3.10)

where α, β, α′, and β ′ are real numbers. We see that the matrix elements of OA2g
and

Jz operators are proportional to each other within the minimal model. This explains
the proportionality between χ ′

A2g(0, T ) and χm
c (0, T ) in Fig. 3.17.

The extreme anisotropy between a- and c-axis magnetic susceptibility also
follows from this minimal model. The in-plane magnetic susceptibility is probed
by a Eg symmetry operator in D4h group [137], which does not couple to exci-
tations between the |A2g〉 and |A1g〉 states. Thus, the predicted in-plane magnetic
susceptibility χm

a is zero.
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3.4.4 The Chirality Density Wave

The result of antiferro-staggering of the chiral states, |HO+〉 or |HO−〉, along
c-axis is a chirality density wave [Fig. 3.28]. The staggered condensate can be
approximated by a form

|ψHO〉 =
∏

r=A site

|HO+
r 〉 ×

∏

r=B site

|HO−
r 〉 . (3.11)

Note that |A2g〉 is the lowest energy crystal field state in the HO phase, and thus
|HO±

r 〉 at uranium site r is dominantly |A2g〉, with a small admixture of |A1g〉, i.e.,
|HO±〉 = cos θ |A2g〉 ± sin θ |A1g〉. θ ≡ arcsin(V/ω0), where ω0 is the splitting
between the lowest lying crystal field states in the minimal model, and V is the
order parameter strength in the HO phase.

If we assume that in the AFM phase, the ordering of the crystal field states
switches, i.e., the |A1g〉 is the lowest energy crystal field state. Moreover, we let
the AFM order parameter be the imaginary part of the complex local interaction,
�(r) ≡ V 〈|A1g〉 〈A2g|〉r , which is proportional to the magnetic dipole operator:
�AFM ∼ 〈Jz〉. The new local wave functions in the AFM phase are |AFM±〉 ≈
cos θ ′ |A1g〉±i sin θ ′ |A2g〉. Here, θ ′ ≡ arcsin(V ′/ω0), and V ′ is the order parameter
strength in the AFM phase. Since the mixing is purely imaginary, the charge
distribution on the uranium site does not break any spatial symmetry; instead, it
acquires nonzero out-of-plane magnetic moments and thereby breaks time reversal

Fig. 3.28 The crystal
structure of URu2−xFexSi2 in
(a) the HO and (b) the AFM
phases. Illustrations capturing
the symmetries of the charge
distributions of the ground
state wave functions are
placed at the uranium atomic
sites. On the right are
illustrations showing the
in-plane structures of the
wave functions

a

b

The “hidden order” phase

The antiferromagnetic phase
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symmetry. The staggering of these local states along Q0 forms an antiferromagnetic
lattice, as illustrated in Fig. 3.28. The Néel-type condensate takes the form

|ψAFM〉 =
∏

r=A site

|AFM+
r 〉 ×

∏

r=B site

|AFM−
r 〉 . (3.12)

The two apparently competing orders, the chirality density wave and the
antiferromagnetic state, are constructed by mixing the two orbital wave functions
on uranium sites with a real or an imaginary phase factor, sin θ or i sin θ ′, thus
unifying the two order parameters.

3.4.5 Ginzburg–Landau Theory

Based on the A2g complex order parameter, Haule and Kotliar built a phenomeno-
logical Ginzburg–Landau theory to explain the phase diagram of URu2Si2 [97].
The Ginzburg–Landau theory is later slightly modified by Kusunose and Harima to
improve the agreement with experiments [143] and recently expanded by Boyer and
Yakovenko to account for “low field training” experiments [76, 146].

The Ginzburg–Landau free energy takes the form

F [�] = �T Â� + β
(
�T �

)2 + γ
(
�T σ̂1�

)2
, (3.13)

where �T ≡ (
ψHO ψAFM

)
, Â ≡

(
αHO 0

0 αAFM

)
, with αHO and αAFM vanish

at the critical temperature, and σ̂1 ≡
(

0 1
1 0

)
is the Pauli matrix. γ ensures a finite

energy barrier between the two phases and hence the phase separation between the
HO and AFM phases [128].

A schematic of the Ginzburg–Landau free energy at various special points in
the phase diagram of URu2Si2 is shown in Fig. 3.29. Below the second order phase
transition TDW , two global and two local minima develop on ψHO and ψAFM axes
due to spontaneous discrete symmetry breaking, where the minima characterize
the ground states in the HO and AFM phases, respectively. At the critical doping
in the ordered phase [Fig. 3.29f], the four minima are degenerate, but the barrier
between the minima remains finite due to the γ term in Ginzburg–Landau functional
[Eq. (3.13)]. Therefore the transition between the HO and LMAF phases is of the
first order, and the coexistence of both phases is allowed, explaining the LMAF
puddles that have been observed in the HO phase [147, 148].

Here, the free energy parameters are introduced following the recipes given
Refs. [97, 143, 146] with adjustments to match the phase diagram in Fig. 3.29. All
energies and temperatures are given in the units of Kelvin, and all pressure units are
in GPa. The quadratic couplings are defined as
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Fig. 3.29 (a) The phase diagram of URu2Si2 system, as shown in Fig. 3.8. (b)–(g) Schematics
of the Ginzburg–Landau free energy at various special points in the phase diagram [solid gray
circles in (a)]. ψHO and ψAFM are the real and imaginary part of the hexadecapole order parameter,
respectively [35, 97, 143]

αHO(ω0, T , P ) ≡ −1

2
JHO(ω0, P ) + α̃HO(ω0, T , P )

and

αAFM(ω0, T , P ) ≡ −1

2
JAFM(ω0, P ) + α̃AFM(ω0, T , P ),

where ω0 = 35 K is the effective energy separation between the singlet states in
the minimal model, T is temperature, and P can be either hydrostatic pressure or
effective chemical pressure.

JHO(ω0, P ) = ω0(1 + a1P)

tanh
(

ω0
2THO

)

and

JAFM(ω0, P ) = ω0(1 + a2P)

tanh
(

ω0
2TN

)

are the effective nearest neighbor exchange constants, with THO = 17.5 K and
TN = 15.5 K.

α̃HO(ω0, T , P ) = 1

2
ω0 coth

(ω0

2T

)
(1 − a3P)
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and

α̃AFM(ω0, T , P ) = 1

2
ω0 coth

(ω0

2T

)
(1 + a3P)

are the effective on-site couplings.

β(ω0, P ) = ω0
[
sinh

(
ω0
T

)− ω0
T

]
cosh2 ( ω0

2T

)

8 sinh4 ( ω0
2T

)

is the quartic coupling.

3.4.6 Origin of the A2g Collective Modes in URu2Si2

Having established the x dependence of the Ginzburg–Landau free energy land-
scape, we are finally at a place to discuss the origin of the A2g collective modes
in the HO and AFM phases. As we mentioned in Sect. 3.3, the local picture of
explaining the A2g mode as crystal field excitation between |A2g〉 and |A1g〉 is too
naive, completely ignoring the effect of phase transition that mixes these two states.
Moreover, the condensate of these local orbital states implies off-site coupling,
which results in a dispersive collective mode as observed by inelastic neutron
scattering [72].

Therefore, the more accurate description of the A2g collective mode should be an
exciton carrying quadrapolar moment, which has the symmetry of the subdominant
phase (e.g., |ψAFM〉 when the system orders in the HO phase). This mode propagates
through the crystal that orders with the dominant symmetry (e.g., |ψHO〉). Likewise,
when the ground state is |ψAFM〉, the propagating exciton is of |ψHO〉 symmetry.
However, we will see below that at the 	 point, the local description actually
captures the basic symmetry properties of the excitation and is appropriate for
describing the symmetry breaking as we have done in Sect. 3.3. The symmetry
difference between the two condensates is mainly A2g , with a small admixture of
A1g; hence, such exciton can be detected by Raman in the A2g channel and explains
the sharp resonance shown in Fig. 3.19.

The energy of the collective mode at the 	 point then simply corresponds to
the energy separation between the dominant long range order (e.g., |ψHO〉 in the
HO phase) and the sub-dominant order (e.g., |ψAFM〉). Or equivalently, the energy
difference between the Ginzburg–Landau free energy minima along ψHO and ψAFM
axes in Fig. 3.29, which is vanishingly small at the critical Fe concentration and even
away from this point, is much smaller than the size of the gap [62, 82]. Comparison
of this energy difference with the A2g mode is shown in Fig. 3.30. A very good
agreement can be seen without any parameter adjustments.

The intensities of the collective modes in each symmetry channel can also be
calculated from the matrix elements, 〈ψAFM| Oμ |ψHO〉, where Oμ is the Raman
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Fig. 3.30 The A2g mode energy is plot against iron concentration x and compared to the energy
difference between the Ginzburg–Landau free energy minima along ψHO and ψAFM axes in
Fig. 3.29

operator in the μ symmetry channel. At the 	 point (long wavelength limit), without
the loss of generality, we can consider the wave functions at site r ,

|ψHO〉r = |HO〉 =
(

1 − V 2 sin2 θ

2ω2
0

)
|A2g〉 +

(
V sin θ

ω0

)
|A1g〉 + O(V 2) (3.14)

|ψAFM〉r = |AFM〉 =
(

1 − V ′2 sin2 θ ′
2ω2

0

)
|A1g〉 +

(
iV ′ sin θ ′

ω0

)
|A2g〉 + O(V ′2). (3.15)

To illustrate the symmetry selection rule in Raman scattering, we consider the
simplest case where V = V ′ and θ = θ ′. In the HO phase, the matrix element in the
A2g channel is then

〈AFM| OA2g |HO〉

=
(

1 − V 2 sin2 θ

ω2
0

)
〈A1g | OA2g |A2g〉 +

(
iV 2 sin2 θ

ω2
0

)
〈A2g | OA2g |A1g〉 + O(V 4)

= 〈A1g | OA2g |A2g〉 − V 2 sin2 θ

ω2
0

(〈A1g | OA2g |A2g〉 − i 〈A2g | OA2g |A1g〉)+ O(V 4)

=
(

1 − (1 + i)V 2 sin2 θ

ω2
0

)
〈A1g | OA2g |A2g〉 + O(V 4). (3.16)

We have used in the above 〈A2g| OA2g |A2g〉 = 〈A1g| OA2g |A1g〉 = 0 by
symmetry selection rules and 〈A1g| OA2g |A2g〉 = − 〈A2g| OA2g |A1g〉 by the fact
that 〈A1g| OA2g |A2g〉 is purely imaginary. Therefore, the intensity of collective
mode in the A2g channel is
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IA2g ∼ | 〈AFM| OA2g |HO〉 |2 =
(

1 − 2V 2 sin2 θ

ω2
0

)
| 〈A1g| OA2g |A2g〉 |2+O(V 4).

(3.17)
Similarly, the matrix element in the A1g channel is

〈AFM| OA1g |HO〉

= iV sin θ

ω0
〈A2g| OA1g |A2g〉+V sin θ

ω0
〈A1g| OA1g |A1g〉 +O(V 3). (3.18)

We have used in the above 〈A1g| OA1g |A2g〉 = 〈A2g| OA1g |A1g〉 = 0 by symmetry
selection rules. Therefore, the “leakage” intensity of the collective mode in the A1g

channel is

IA1g ∼ | 〈AFM| OA1g |HO〉 |2

=
(

V 2 sin2 θ

ω2
0

)
| 〈A1g| OA1g |A1g〉 +i 〈A2g| OA1g |A2g〉 |2+O(V 4).

(3.19)

Thus, the intensity in the A1g channel is proportional to the square of the order
parameter, V 2 sin2 θ , providing an indication of the symmetry breaking in the HO
phase. Comparison of IA2g to IA1g is however difficult, because the evaluation of
the expectation values depends on the details of the intermediate states and the laser
excitation energy.

3.5 Summary

Summarizing this chapter, we used polarization resolved low temperature Raman
spectroscopy to study the broken symmetry and collective modes in the long range
ordered phases of URu2−xFexSi2. By studying the temperature dependent Raman
response, we observed a collective mode appearing in the A2g symmetry channel
below the second order phase transition, in both HO and AFM phases. The mode
energy continuously evolves with increasing x, decreasing from 1.7 meV in the HO
phase to almost zero at the HO/AFM phase boundary, and reappears with increasing
energy in the AFM phase. The mode’s evolution provides direct evidence for unified
order parameter for both HO and AFM phases arising from the orbital degrees of
freedom of the uranium-5f electrons.

While the long range ordering and broken time reversal symmetry in the
pressurized and chemically substituted phases are undoubtedly due to AFM, the
broken symmetry in the HO phase has been haunting the condensed matter physics
community for many years. By carefully analyzing the Raman response in all
available scattering geometries in the HO phase, we conclude that the reflection
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symmetries σv and σd must be broken. Therefore, the HO must have a ground
state breaking the local chirality at uranium sites. Moreover, the A2g mode is also
observed by inelastic neutron scattering at finite momentum, Q0, suggesting the
lattice translational symmetry is also broken along c-axis, resulting in a chirality
density wave.

In our study, we find that the uranium-5f orbitals in URu2Si2 can arrange
into orders with broken chirality or time reversal symmetry. While such orders
are competing for the same phase space at low temperature, they are also subtly
connected and were here unified into a common order parameter, which are almost
degenerate in energy. Here, we propose that the “unrealized” phase is also the first
excited state and can be probed through inelastic light scattering. The low energy
excitations in the Ginzburg–Landau theory are usually Goldstone modes, but here
we detected a new type of collective mode which corresponds to the oscillation
between the HO and AFM phases.

This is by no means the end to the story of the HO in URu2Si2. A direct
experimental verification to the chiral wave function, |HO〉, is still yet to be done.
Whether the Raman active collective mode observed in the AFM phase is indeed
related to the HO phase, and why is it absent in the inelastic neutron scattering
data? How does the Raman collective mode in the HO phase soften toward the
AFM phase? Is it a first or second order phase boundary? Is there a quantum critical
point at the phase boundary? Most importantly, how generic are the phenomena we
observed in the URu2Si2 system? Can we reproduce the HO in other heavy fermion
systems? Are we able to describe or even predict the HO by ab initio calculations?
Knowing the symmetry of the order parameter is just a small step forward, and there
are still many unanswered questions lying in front of us.
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Chapter 4
Secondary Emission in Bi2Se3

Abstract In this chapter I will present our study of the secondary emissions
(radiation) in a prototypical 3D topological insulator (TI) material, Bi2Se3. I will
begin with a short overview on the physics of 3D TIs, with focus on the properties of
the spin polarized surface states (Sect. 4.1.2). In Sect. 4.2, I will present our Raman
spectroscopic results on the bulk and surface phonon modes in Bi2Se3, for which we
identified the symmetries and self-energies and discussed the excitation dependence
of them. In Sect. 4.3, I will present our electronic Raman scattering results in the
much higher energy regime, where we observed a chiral spin mode as collective
spin–flip excitations of the surface Dirac fermions. In Sect. 4.4, I will present our
photoluminescence study of Bi2Se3, where we show a highly circular polarized
surface exciton as a result of chiral spin texture in the surface states. Finally, I will
make a brief summary of our study and its implications in Sect. 4.5.

The work in this chapter was done in collaboration with S.-W. Cheong (Rutgers),
A.F. Kemper (NCSU), L.S. Levitov (MIT), S. Maiti (U. Florida), D.L. Maslov (U.
Florida and NHMFL), R. Merlin (U. Michigan), and S. Oh (Rutgers).

The phononic study that focused on the surface phonons of Bi2Se3 is published in
[1]. The Raman study of the chiral spin mode on the surface of Bi2Se3 is published
in [2], and the photoluminescence (PL) study of the chiral excitons in Bi2Se3 is
published in [3].

4.1 Introduction

Since ancient times, humans have been using physical properties, such as electrical
conductivity, magnetism, hardness, color, etc., to classify the materials around
us. Based on the electrical transport properties, we can broadly divide materials
into two classes, i.e., the conducting metals where the conductivity increases
as temperature decreases, and the nonconductive insulators with exponentially
decreasing conductivity with decreasing temperature. One of the great triumphs of
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condensed mater physics in the last century is to understand the differences between
these two classes of materials based on the electronic “band theory.”

If we think about it, the electronic properties in solids are not trivial to describe
at all. For example, the electrical transport is not well-defined in a single atom or
molecule and only becomes relevant when we consider many atoms closely packed
such that their electronic wave functions overlap with each other. To describe such
“collective” behaviors, we need to consider the many electrons as a whole instead of
ascribing them to each atoms, and this is the central idea behind the band theory. In
a solid, the electrons lose their single particle identities due to the very high density
and long ranged Coulomb interaction with each other. The collective movements
of electrons renormalizes into propagating waves called “Bloch waves,” where
the eigen-energies are neither discrete local states nor a simple parabola as free
electrons. Instead, the atomic energy levels merge to form electronic bands, where
dispersions are determined by the crystal symmetry, orbital characters, chemical
bondings, etc.

Within this context, if the chemical potential (Fermi energy, EF ) situates inside
an energy gap where no states are allowed, then it is a band insulator, otherwise
a metal [4]. The most well-known insulator is perhaps the vacuum, with a gap of
about 1 MeV below the electron–hole continuum, i.e., the minimum energy required
for the “interband transition” that creates an electron–hole pair (Fig. 1.2). Whereas
in a metal, it only requires infinitesimally small amount of energy to create an
electron–hole pair through the “intraband transition,” which is responsible for the
charge transport. That is, there exists a connection between the band structures
and electrical transport properties, which justifies the classification of metal versus
insulator.

The band theory can be verified experimentally by angle resolved photoemis-
sion spectroscopy (ARPES), which directly maps the dispersion of quasiparticle
states [5]. In the past century, physicists have been able to explain most of the
material properties using the band theory. The development of such microscopic
theories has allowed us to precisely control materials’ properties by fine-tuning the
band structure and chemical potential. It is fair to say that the foundation of the
digital revolution we enjoy today is built upon the deep understanding of the band
theory. Although physicists are still struggling to understand the metal-insulator
transition and some other exotic phenomena due to the strong electron–electron
interaction in some transitional metal oxides [6], the situation of the band theory is
in general satisfactory for most systems.

However, toward the end of the past century, the discovery of quantum Hall effect
opened the gateway to an entirely new phase of matter that does not fit into our
traditional classification of materials [7]. In this new phase of matter, the bulk can
be made insulated while the boundary is metallic by simply tuning carrier density
and magnetic field, without breaking any space group symmetry. These materials are
termed “topological” where the conductive boundary states are protected by global
symmetries, rather than the detailed crystalline surface structures and electron filling
as in non-topological band insulators.
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In particular, the proposal and realization of 3D topological insulators (TIs)
have attracted major interest in the condensed matter physics community into this
emerging field. In these materials, the conductive 2D surface states are protected
by the time reversal symmetry (TRS) and guaranteed to exist without any external
magnetic field. Microscopically, these topological boundary states originate from
strong spin–orbit coupling (SOC) in the bulk, which abruptly terminates at the
crystalline boundary. Due to the symmetry protection, these states are extremely
robust unlike their non-topological counterparts, and the transport properties are
mainly governed by the “topological invariant” rather than the fine prints in the bulk
band structures [8].

Make no mistake, the topological invariant themselves are also derived from the
bulk band structures, but in a much more abstract way such that the details of the
bands do not affect the outcome. In other words, we may put the materials through
extreme conditions (such as magnetic field, temperature, pressure, chemical doping,
etc.), and the topological boundary states and their associated transport properties
would often remain unchanged, as long as the “topology” of the bands is unchanged.
This is obviously a very nice property for electronic device design and applications.
However, the original proposals have been limited to 2D systems, which are more
difficult to manufacture and verify experimentally.

In the past decade, major developments have been made in the understanding of
3D materials’ boundary properties based on their bulk band topology near the Fermi
energy [8], immediately raising great interests in the condensed matter physics
community. Materials that possess nontrivial band topologies and surface states
are termed “topological materials.” Just like metal versus insulators, topological
materials can be further classified into different categories based on the topological
invariants, and many of them are already experimentally verified [9–11]. Broadly
speaking, depending on the bulk band structure at the Fermi level, topological
materials can be separated into topological insulators and topological semimetals.
The interesting aspects of the topological boundary states in three-dimensional (3D)
TIs will be discussed in more detail later; see Sect. 4.1.2.

During the transition from a trivial band insulator to a topological insulator,
there must exist a critical point at which the conduction and valence band intersect
each other at a few nodal points or 1D nodal lines (either open arcs or closed
loops) in the Brillouin zone. Depending on the symmetry and dimension of the
system under study, the topology of these band crossing points can be further
classified. For example, graphene can be considered as one of the simplest kinds
of topological semimetal, i.e., a 2D Dirac semimetal. Around the nodes, the
quasiparticles are described by the linearly dispersing bulk bands and topological
boundary states. A variety of anomalous transport and optical properties have been
predicted and some realized in various kinds of 3D topological semimetals [10, 11].
These exotic properties not only provide test beds for our current understanding of
condensed matter theory but also possess promising applications in optoelectronics
and spintronics.

The subject of topological band theory studies the relationships between topolog-
ical boundary states and the bulk using only first principle calculations and lattice
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symmetries. This is a very active and largely unexplored field, with new results
appearing almost every day and many challenges lying ahead. In the following
sections, we will focus on a particular kind of topological material, i.e., the 3D
topological insulators.

4.1.1 Band Topology in Solids

The topological invariants are ultimately derived from the bulk band structures,
which originate from the chemistry and symmetries of the lattice. Just as in geo-
metrical topology that studies the properties that are preserved during deformation
of objects, band topology is concerned with properties that are conserved as we
continuously deform the bulk band structures. The widely used example is that a
doughnut and a coffee mug both contain one open hole in it, which corresponds
to the “genus” g = 1 that remains unchanged as we continuously deform the two
objects into each other. Therefore, that hole is a topological property that cannot
be easily removed, unless we cut the doughnut open with a knife or break off the
coffee mug handle. In topological materials, the “doughnut hole” is reflected on the
boundary, where metallic states must exist regardless of how we deform the bulk
band structure through external perturbations or charge doping (within the range
of bulk band gap). Note that not all boundary states in a topological material are
topologically protected, there could be trivial states that coexist. Just like cutting
the doughnut into halves, removing the topological boundary states also requires
something dramatic, which is different for each topological class. In 3D topological
insulators, this means applying magnetic field strong enough such that the Zeeman
splitting is comparable to the spin–orbit coupling (SOC) or decrease the SOC
strength significantly, which are not physically possible in most cases. Therefore, we
often refer to the topological surface states as protected by time reversal symmetry.

Note that not all topological materials require strong SOC, but in the case of TIs,
SOC plays a central role and therefore we should do a small detour and discuss it
briefly now. The SOC is a relativistic effect that is present both in a single atom and
also on the extended Bloch waves in solids. That is, SOC can be derived from the
relativistic Dirac equations by keeping terms on the order of 1/c2. However, we can
capture the essence of SOC in the atomic limit by the following simple arguments.
In the rest frame of the electron in an atom, the SOC originates from the effective
magnetic field acting on the electron by the nucleus.

B = −v × E
c2

Let E = −∇rV r̂ = r
er

∂U
∂r

and v = p̂/m, and we can further simplify the equation
to the more familiar form:
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B = 1

emc2 (
1

r

∂U

∂r
)r × p.

Note that the electric potential gradient ∂U/∂r is proportional to the nucleus charge
to the 4th-power, Z4, and therefore tend to be important only in heavy elements.
The last term r × p is nothing other than the orbital angular momentum, L, and
therefore SOC is not present in s-orbitals. The SOC interaction Hamiltonian for
atomic orbitals is then

HSOC = μB

h̄mec2

(
1

r

∂U

∂r

)
L · S. (4.1)

While the SOC in solids must ultimately be related to the atomic limit and thus
have the same order of magnitude, it is not straightforward to derive a general
equation for solids. This is because of the extremely diverse chemical compositions
and spatial symmetries in solids. It is however possible to formulate effective models
for many general cases, such as the Dresselhaus effect and the Bychkov–Rashba
effect [12]. A detailed discussion and derivation of these effects are beyond the
scope of this thesis, and we will only use the results throughout the rest of the
chapter.

In 3D topological insulators, there are 4 topological invariants, (ν0; ν1, ν2, ν3),
each taking value 0 or 1, with 1 being topologically nontrivial. Fu, Kane, and Mele
came up with a simple method to compute these invariants [13, 14]:

(−1)νi =
n∏

j=1

δj , (4.2)

where n = 8 for ν0 and n = 4 for the rest, and the product δj1 × δj2 determines the
time reversal polarization at time reversal invariant momentum (TRIM) �j . Here,
�j1 and �j2 are 2 momenta that project onto the same point on a particular surface,
on which we are interested in the surface states’ spectra. For example, the k-points
(1,0,0) and (1,0,1) both project onto the same point on the (0,0,1) surface. We also
see that ν0 is a special invariant, which involves all 8 TRIM in 3D and characterizes
a “strong TI.” That is, any of the surfaces is guaranteed to host topological surface
states, which are also robust against weak time reversal invariant perturbations. If
ν0 = 0, the other 3 invariants can still independently take nonzero values and predict
at least one surface with topological states.

Although δj = ±1 is in general not easy to compute, for lattices with inversion
symmetry, δj simplifies to the product of the parity eigenvalues of all valence
bands evaluated at TRIM �j [13]. Nontrivial surface states arise due to the
“band inversion” at TRIM points in the BZ as depicted in Fig. 4.1. The bulk
conduction and valence bands are separated by a band gap, as derived from DFT
calculations without including SOC. Assuming that the two bands have different
parity eigenvalues (with respect to the inversion symmetry operator), denoted by
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band gap

inverted
band gap

critical
point
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Fig. 4.1 From left to right are illustrations of “band inversion” due to increasing spin orbit
coupling strength (figure adapted from [8]). (a) Band insulator where the conduction and valence
bands with opposite parity eigenvalues are separated by a trivial band gap. With increasing SOC,
the gap closes in (b) and eventually crosses each other and opens up a nontrivial band gap due to
avoided crossing. As a result, the orbital character at the high symmetry point is inverted

red and blue colors, the inclusion of SOC will decrease the band gap at some
high symmetry k-points given the proper orbital characters [15]. Once the gap
becomes negative, the band crossing points can be hybridized and open up a gap
in the bulk due to “avoided crossing.” The parity at the high symmetry point is
then inverted, giving an additional negative sign to δj , which leads to nonzero νi .
Outside the crystal, the topological invariant is necessarily zero, because vacuum
is a trivial “insulator” for electrons. As a consequence of the “bulk–boundary
correspondence” [16, 17], the band gap must goes to zero at the bulk–vacuum
interface, i.e., gapless surface states are guaranteed by the topology of the bulk
bands.

4.1.2 Topological Surface States

It should be emphasized that every bulk material has its surface (boundary) states,
which arise simply due to the abrupt change of electronic potential at the bulk–
vacuum boundary. This argument applies both to the electronic and lattice degree of
freedom, as illustrated in Sect. 4.2, comparing the surface to bulk states. In general,
the long lived Bloch states inside the bulk of the crystal are solutions to the periodic
Schrödinger’s equation. These solutions are no longer valid at the crystal interface
due to the breakdown of lattice periodicity [18, 19]. The eigenstates (electronic
or phononic) satisfying the surface boundary conditions are localized states at the
surface and exponentially decay into the bulk, as illustrated in Fig. 4.2. Namely, the
eigen-energies of the surface states are entirely within the bulk band gap. Note that
this is very different than a bulk state that extends to the surface. The main difference
is that the bulk states will more often than not have finite kz dependence, while
surface states do not. If the surface states are not energetically well-separated from
the bulk bands, then the hybridization between surface and bulk bands results in the
so-called surface resonance, as illustrated in the third column of Fig. 4.2. Typically
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Fig. 4.2 Illustrations of the electron bands/states and wave functions at the crystal–vacuum
interface, reproduced from [19]. (Top row) From left to right are the electronic band structures
for bulk bands, surface states, and surface resonance, respectively. The shaded areas are the bulk
bands of all kz values projected onto the surface BZ, where kz is the momenta along the out-of-
plane direction. They are reproduced in the center and right columns to illustrate the positions of
the bulk bands, where the surface state/resonance is denoted by the thick line. (Bottom row) The
electronic wave functions associated with the top band structures

this happens if the surface state and bulk band satisfy certain symmetry constraints
(see, for example, [20]). In a surface resonance, the state has finite intensity through
the whole bulk but is enhanced at the surface.

The non-topological surface states or resonances are highly sensitive to the
details of the crystal’s surface structures, such as the termination of the atomic
layers, surface reconstruction and dangling bonds. Whereas the topological surface
states are a necessity of the material’s band topology that does not care about
the details of the surface structure. In fact, the topological surface states are
extremely robust and not easily destroyed by surface doping, which is useful
to distinguish the topological from trivial surface states that could coexist in
topological insulators [21, 22].

The 3D TIs and trivial (band) insulators are similar to each other in the sense
that both of their Fermi energies (EF ) are within the bulk band gap (Fig. 4.3). But
in the case of a 3D TI, there are additional gapless surface states inside the bulk
band gap that intersects EF at the “Dirac point.” These additional states support 2D
conducting channels at the surface and are protected from nonmagnetic impurity
scatterings due to time reversal symmetry [13]. The topological surface states in a
3D TI are described by the Hamiltonian:
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Energy

EF
Eg>>kBT

k

Energy

EF

k

Fig. 4.3 (a) Illustration of the typical band structure of a trivial insulator. Colored area denotes
bands filled by electrons. Valence band is totally filled, while the conduction band is empty. They
are separated by a band gap Eg , which is much larger than the thermal energy kBT . The dash line
depicts the position of Fermi level EF . (b) The band structure of an ideal topological insulator. The
gapless surface states are denoted by the red lines

H(k) = k2

2m∗ σ0 + vF σ · k, (4.3)

where m∗ is the effective mass, vF is the Fermi velocity, σ = (σx, σy, σz) are the
Pauli matrices, σ0 is the 2×2 unit matrix, and k = (−ky, kx,

λ
2vF

[k3+ + k3−]) with
k± ≡ kx ± iky . The z component of k describes hexagonal warping of the surface
states away from the Dirac point [23].

The energy dispersion of the surface states described by Eq. (4.3) is

E±(k) = k2

2m∗ ±
√

v2
F k2 + λ2k6 cos2(3θ), (4.4)

where ± corresponds to the upper and lower Dirac cones, and θ is the azimuth angle
of in-plane momentum k with respect to the x axis (	 − K). To the lowest order
expansion in k, the dispersion is linear with the wave vector k, E = vF h̄k, where vF

is Fermi velocity. Due to its linear dispersion, the rest mass of Dirac Fermion near
Dirac point is zero. Their wave function must be described by Dirac equation rather
than Schrödinger equation. The charge carriers in the surface states are also called
"Dirac fermions." One direct consequence of zero effective mass is the well-defined
chirality

h ≡ σ · p = ±1, (4.5)

where σ is Pauli matrix and p is momentum unit vector. For typical particles with
nonzero mass, p depends on the observer’s reference frame and may even change
sign if the observer is moving faster than the particle. Therefore, chirality is not well-
defined for massive particles. But the eigenvalue of chirality operator is irrelevant to
the observer’s reference frame when acting on wave functions described by Dirac
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equation. Therefore, the chirality of Dirac fermion is well-defined and the surface
states are referred to as “chiral states.”

A consequence of well-defined chirality is the suppression of the 2kF -scatterings
(backscattering). Since chirality is a conserved physical quantity in topological
insulators, electrons moving in opposite direction are required to have opposite
spins (from Eq. 4.5). Therefore, backscattering is suppressed since it requires higher
energy to flip electron spins [24]. This predicts a higher mobility for the conductive
topological surface states as compared to usual surface states. However, one should
note that the spin-momentum texture does not exclude scattering from any other
angles, e.g., 175 degrees. To date, the observed electronic transport properties of the
topological surface states are in general quite similar to usual 2D electronic states,
except for the weak anti-localization [25, 26], and quantum interference effects [27].

Another consequence of the linear dispersion is the π -shift in Berry’s phase,
γ [28]. We know that electrons in crystals moving in a closed trajectory at constant
energy in momentum space gain an additional phase called Berry’s phase that is
zero in typical conductors and π in massless Dirac materials (without considering
spin–orbit coupling). Further consideration of spin–orbit interaction (which is non-
negligible in topological insulators) will modify this π shift in Berry’s phase [25].
The exact value of this phase shift can be experimentally determined through
Shubnikov–de Haas oscillations [26, 29].

4.1.3 The Band Structure in Bi2Se3

Bi1−xSbx , Bi2Se3, and Bi2Te3 were first theoretically predicted to be 3D topological
insulators [13, 15]. Later on, the 2D surface state of Bi1−xSbx was experimentally
confirmed using Angle Resolved Photoemission Spectroscopy (ARPES) [30]. Soon
after, Bi2Se3 [31] and Bi2Te3 [32] were also experimentally confirmed by ARPES.
Calculated band structure of Bi2Se3 is shown in Fig. 4.4a, where the warmer color
denotes a higher density of states (DOS). The gapless states with linear dispersion
can be seen crossing bulk band gap. The center white line denotes the position of
Fermi surface. Experimental result of Bi2Se3 from ARPES is shown in Fig. 4.4b.
The color code denotes ARPES spectra height, which is proportional to electron
DOS. The yellow areas are bands with high DOS, indicating the position of bulk
bands, and the lower one and upper one are valence band and conduction band,
respectively. The white dotted line marks the position of the Fermi level. A red
colored, gapless band with almost linear dispersion can be seen inside the bulk band
gap. The electron cyclotron mass can be estimated from the energy dispersion in
Fig. 4.4b. The cyclotron effective mass is usually defined as [4]

mc = h̄2

2π

∂A

∂E
, (4.6)
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Fig. 4.4 (a) Theoretical work based on first principle calculations from [15]. The warmer color
indicates higher electron DOS, and the blue regions are bulk band gap. The upper and lower
irregular red regions are the bulk conduction and valence bands, respectively. A linear dispersed
gapless surface state can be seen inside the bulk band gap. (b) The ARPES measurement of surface
electronic band structure from [31]. The warmer color denotes higher electron DOS, and the black
region is bulk band gap. The upper and lower yellow regions are bulk conduction and valence
bands, respectively. The white dash line marks the position of Fermi level. A red colored, gapless
band with nearly linear dispersion can be seen inside the bulk band gap

where A is k-space area enclosed by the orbit and E is the energy. Combine the
above equation with the linear dispersion relation of Dirac fermions, E = vF h̄k, it
can be shown that mc = h̄k/vF . Therefore, the cyclotron mass is zero at Dirac point.
The Fermi velocity estimated from Fig. 4.4b is ∼ 4.6 × 105 m/s, and the cyclotron
mass in surface states near EF is ∼ 0.25 m0 (kF ∼ 0.1 Å−1 and EF ∼ 300 meV),
where m0 is the free electron mass. For the electrons at the bottom of conduction
band in Fig. 4.4b (assume parabolic dispersion, E = h̄2k2/(2mc)), the estimated
cyclotron mass mc ∼ 0.12 m0 for electrons near EF (kF ∼ 0.04 Å−1 and EF ∼
50 meV).

The crystal structure of Bi2Se3 is shown in Fig. 4.5 (figure from [15]). The
primitive lattice vectors are denoted as t1, t2, and t3. It has layered structure with
a triangular lattice within one layer. Each unit cell consists of five-atom layers along
the c-axis, which is known as a quintuple layer (indicated by the red square). The
lattice atoms in a quintuple layer have three different positions, denoted as A, B,
and C. The thickness of each quintuple layer is about 1 nm, and the coupling force
between quintuple layers is weak (van der Waals type).

One of the most important feature of the surface state is its spin texture. The
electron spins of the surface states are predicted to be in-plane and perpendicular
to the momentum (see Fig. 4.6a). The red arrows denote spin direction of each
point on the intersection of Fermi surface and Dirac cone. Those spin textures have
been verified by ARPES (Fig. 4.6b–d). Figure 4.6b is the top view of the Dirac
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Fig. 4.5 (a) Crystal structure of Bi2Se3 with three primitive lattice vectors denoted as t1, t2, and
t3. A quintuple layer is indicated by the red square. (b) Top view along the z-direction. The lattice
atoms in a quintuple layer have three different positions, denoted as A, B, and C. (c) Side view of
the quintuple layer, which is about 1 nm thick. Figure adapted from [15]

cone intersection with Fermi surface, where the yellow arrows are the expected
spin orientation. The inner white area is the bottom of bulk conduction band, but
a darker ring with radius ∼ 0.1 Å−1 is the intersection of Dirac cone with Fermi
level. Figure 4.6c and d shows the measured spin polarizations along the kx direction
(z direction is defined as out of plane). No clear signal can be seen in x and z
components. But in the y component, a clear peak of opposite sign and equal value
at kx ∼ ±0.1 Å−1 can be seen, which is in accord with the position of Dirac cone
edge. This observation agrees well with the theoretical prediction [14]. We can
understate this spin texture in a simple way. We know that, due to relativistic effect,
moving charge carriers in their rest frame will experience an effective magnetic
field Beff ∼ vF ×E, where vF is Fermi velocity of the charge carriers, and E is
the electric field exerted on the charge carriers in crystal’s rest frame. This effect is
more pronounced in systems with strong spin–orbit coupling. When considering the
carriers confined on the surface of a crystal, those carriers will only experience an
effective electric field Es along out-of-plane direction from symmetry argument.
Therefore, the effective magnetic field will be pointing along in-plane direction
and perpendicular to vF . Electrons moving on the surface will then tend to line
up their spins with Beff in order to minimize Zeeman energy, which is proportional
to σ ·Beff . From this point of view, charge carriers moving in opposite direction



106 4 Secondary Emission in Bi2Se3

–0.2

–0.2

–0.1 0.0

dc

ba

0.0

0.1

EB = –20 meV

kx (Å
–1)

kx (Å
–1)

k y
 (

Å
–1

)

Px
Pz

ky

0.12

0.6

0

–0.6

–0.12
–0.08 0 0.08

E

kx

0.2

0.2

0.3–0.2

S
pi

n 
po

la
riz

at
io

n

–0.2

–0.1 0.0

0.0

0.1

EB = –20 meV

kx (Å
–1)

Pz

0.2

0.2

0.3

–
M

–
M

–
M

–Γ

–Γ

SS –
M

Fig. 4.6 (a) Schematic drawing of Bi2Se3 surface state spin texture near Fermi energy (denoted
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will have their spin polarization inverted. Because the effective field is pointing
along opposite direction on the opposite surface, spin polarization of charge carriers
moving in the same direction but on opposite surface will also be inverted.

Kane and Mele developed an easy way to distinguish nontrivial topological
insulators (such as Bi2Se3) from trivial ones (band insulator) using a special
topological invariant, Z2 [8, 13]. They found that for a material with Fermi level
inside band gap, Z2 can only be 0 (trivial insulator) or 1 (nontrivial topological
insulator). Z2 can be easily determined by counting the number of Dirac pairs inside
the band gap and then take modulo 2. For materials with Z2 = 1, the gapless
surface states are protected from weak disorder and nonmagnetic impurities by time
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reversal symmetry (TRS). For materials with Z2 = 0, the surface states can be easily
destroyed by a small perturbation and become trivial insulators.

4.1.4 Materials and Methods

Table 4.1 lists 6 Bi2Se3 single crystals and films measured in this study. The
single crystals were grown by modified Bridgman method. Mixtures of high-purity
bismuth (99.999%) and selenium (99.999%) with the mole ratio Bi : Se = 2 : 3
were heated up to 870 ◦C in sealed vacuum quartz tubes for 10 h and then slowly
cooled to 200 ◦C with rate 3 ◦C/h, followed by furnace cooling to room temperature.
The thin film samples were epitaxially grown on Al2O3 (0001) substrates in a
custom designed molecular beam epitaxy (MBE) chamber [29, 33]. They were
immediately transferred into a cryostat after taking out of MBE chamber. Notice
that the light penetration depth in Bi2Se3 within energy range of current study is
about 10 nm [34]. Therefore, the signal is dominated by scattering from the first few
QLs of Bi2Se3, and the scattering volume in the superlattice samples is practically
the same as bulk.

Bi2Se3 has a rhombohedral crystal structure with the D3d point group symmetry.
The irreducible representations and Raman selection rules are given in Table 4.2.
With five atoms in a primitive unit cell, there are a total of three acoustic and 12
optical bulk phonon branches. At the 	-point, the irreducible representations of
the Raman active phonons are 2A1g + 2Eg , and the infrared active phonons are
2A2u + 2Eu [35, 36], where the corresponding atomic displacements are shown in
Fig. 4.7. These bulk phonon modes have been measured by Raman and infrared
spectroscopies [35–46], and the values reported in [37] and [40] are listed in
Table 4.3.

The crystal naturally cleaves along the (111) surface terminated at Se atoms,
forming optically flat QLs weakly bonded by van der Waals force [35]. The surface
QL has the symmorphic P 6mm wallpaper group symmetry (two-dimensional
crystallographic point group C6v) [48–50]. Since the surface layer phonon modes
in Bi2Se3 are not perfectly localized and decay into the bulk, it is more appropriate
to analyze our experimental results within the layer group P 3m1 (crystallographic

Table 4.1 The list of single crystal and films measured in this study

Sample # Composition Description Growth

#2 Bi2Se3 50 QL thick film MBE

#8 (Bi2Se3)m(In2Se3)n 50 nm superlattice with (m,n)=(5,5) MBE

#10 (Bi2Se3)m(In2Se3)n 50 nm superlattice with (m,n)=(10,5) MBE

#13 Bi1.95In0.05Se3 Single crystal with indium doping Bridgman

#14 Bi2Se3 Pristine single crystal Bridgman

#A Bi2Se3 Pristine single crystal Bridgman
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Table 4.2 The Raman selection rules in the bulk and on the surface of Bi2Se3 [51, 52]. Upon the
reduction of symmetry from point group D3d to C3v , the A1g and A2u irreducible representations
merge into A1, A2g and A1u merge into A2, and Eg and Eu merge into E [53]. Note that the surface
phonon and electron wave functions are characterized by different symmetry groups [49] and thus
follow different selection rules

Scattering Bulk Surface phonon Surface electron

geometry (D3d ) (C3v) (C6v)

RR A1g + A2g A1 + A2 A1 + A2

RL 2Eg 2E 2E2

XX A1g + Eg A1 + E A1 + E2

YX A2g + Eg A2 + E A2 + E2

Eg(a) Eg(a) A1g(a) A2u(a)Eu(a) Eu(a)

Eg(b) Eg(b)

Raman active modes IR active modes

A1g(b) A2u(b)Eu(b)

+

+

–

–

+

–

+

–

+

+

+

–
+

–

+

+

–

Eu(b)

Fig. 4.7 Schematic drawing of the atomic displacements corresponding to the optical phonon
modes in Bi2Se3 at the BZ center. The black and white spheres correspond to Bi and Se atoms,
respectively. The ± signs denotes movements in the direction perpendicular to the paper. Figure
adapted from [47]

point group C3v , which is a subgroup containing common symmetry operators of
D3d and C6v groups) [49].

All Raman scattering measurements are taken from ab surfaces freshly cleaved
or grown immediately prior to the measurements. Samples #2–14 are measured in
a quasi-backscattering geometry in a continuous He-flow optical cryostat. A glove
bag with controlled dry nitrogen gas environment was sealed to the cryostat loading
port. After purging the bag to the desired conditions, the single crystals were cleaved
in the glove bag immediately before loading into the cryostat for cooling, without
exposure to air. We use λL =532 nm solid state laser for excitation, where the spot
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Table 4.3 The summary of the bulk and surface phonon mode energies. This work’s data is
compared to the spectroscopic and DFT computation studies reported in the literature. All values
are given in units of cm−1

Experiment Calculation

Symmetry This work Literature LDA+SOI [75] GGA+SOI [47]

A
(1)
1g 75 73 [39, 40, 43, 46] 77 64

A
(2)
1g 180 175 [39, 40, 43, 46] 176 167

E
(1)
g 39 39 [39, 40, 43, 46] 41 39

E
(2)
g 137 133 [39, 40, 43, 46] 139 124

A
(1)
2u – N/A 139 137

A
(2)
2u – N/A 161 156

E
(1)
u – 61 [37] 80 65

E
(2)
u – 133 [37] 131 127

A
(1)
1 60 68 [68] N/A N/A

A
(2)
1 136 129 [40] N/A N/A

A
(3)
1 158 160 [40, 71] N/A N/A

A
(4)
1 173 N/A N/A N/A

E(1) 67 68 [40] N/A N/A

E(2) 126 125 [40] N/A N/A

size is roughly 50 μm. The scattered light was analyzed and collected by a custom
triple-grating spectrometer equipped with a liquid nitrogen cooled CCD detector.

The irreducible representations of the D3d and C3v groups corresponding to these
scattering geometries are listed in Table 4.2. Notice that in both the D3d and C3v

groups, the phonon intensities do not depend on the orientation of the crystallo-
graphic axis. The notations X and Y have no reference to the crystallographic a and
b axes.

4.2 Surface Phonons

Theoretical modeling of surface lattice dynamics was first developed by Lifshitz and
Rosenzweig [54, 55] and later expanded by various workers [56–59]. The basic idea
is to consider the free surface as a perturbation of an infinite lattice and therefore
to derive the surface modes from the spectrum of bulk vibrations. As a result, the
frequencies of atomic vibration modes at the surface are modified to a smaller
value than in the bulk at the Brillouin zone center (	 point). If there is a gap in
the phonon density of state (DOS) and with large enough distortion, the surface
phonon DOS can be entirely separated from the bulk [54, 57]. Such modes are
long lived and localized at the surface, where the dispersion can be quite different
than the bulk [60]. However, it is often experimentally challenging to distinguish
surface signal from the overwhelmingly stronger intensity contribution of the bulk.
Moreover, if the surface vibration mode is not completely gapped out from the bulk
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spectrum, then the surface and bulk modes are indistinguishable. Instead, the “bulk
phonon” acquires only a slight energy shift near the crystal surface. Notice that the
surface modes originate from abrupt termination of the lattice restoring force across
bulk–vacuum interface in a semi-infinite crystal and should not be confused with
the phonons in quasi-2D ultrathin samples, which are almost decoupled from the
underlying substrate of a different material [38, 39, 42, 44, 61].

While the bulk phonon modes have been extensively studied in Bi2Se3 single
crystals [35–46], only a few papers have reported studies of the surface vibra-
tion modes. Zhu and coworkers observed strong Kohn anomaly at about 2kF

using helium atom scattering (HAS) [62] and deduced the interaction between
surface phonon and the Dirac electrons to be much stronger than the values
previously reported by angle-resolved photoemission spectroscopy (ARPES) mea-
surements [63–66], suggesting that the electron–phonon coupling on TI surface
may be more complex than anticipated. Time-resolved ARPES study of single
crystals reported the observation of one A1g bulk phonon at about 74 cm−1, and an
additional mode with slightly lower energy that couples much stronger to the surface
states, consistent with what was suggested by transport measurements [67]. This
mode was interpreted as a surface phonon associated with the observed A1g bulk
phonon [68]. However, alternative results have also been reported [65, 66, 69, 70],
suggesting the existence of multiple phononic decaying channels that may depend
on the details of sample preparation. Electron energy loss spectroscopy (EELS)
study has distinguished a weak mode at about 160 cm−1 in Bi2Se3, which was
assigned to the surface vibration mode associated with an A1g bulk phonon [71].
The Raman scattering work on bulk single crystal [40] and exfoliated nano-crystals
reported several additional features, and they were attributed to infrared active
phonon modes becoming Raman active due to inversion symmetry breaking at
crystal surface [38, 44].

4.2.1 Results

Raman spectroscopy is a conventional tool for studying surface phonon modes [72,
73]. The advantages of Raman spectroscopy is the wider accessible energy range
compared with HAS, much higher energy resolution compared to EELS, and the
additional information on the symmetries of the phonon modes. We focus our study
on the bulk single crystals, which are unexposed to air or any chemicals. In addition
to the four Raman active bulk phonons, we observed 6 additional modes with
about 20–100 times weaker intensities compared to the bulk phonons (Fig. 4.8).
By comparing the data to the results obtained by the complementary spectroscopic
techniques and the calculations, we assign the observed additional modes to surface
phonons arising from out-of-plane lattice distortion near the crystal–film interface.
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Sample Dependences

Figure 4.8 shows the Raman response function χ ′′(ω), taken at 13 K with 532 nm
excitation, plotted on a semi-log scale. In order to confirm the tiny features of surface
modes, we compared the results from bulk crystals and MBE films. Figure 4.8a and
b is measured with the RR and RL scattering geometries, respectively (Table 4.2).
The dashed lines label the observed phonons as tabulated in Table 4.3. The strong
modes at 72 and 174 cm−1 in RR scattering geometry are the bulk A1g phonons of
Bi2Se3 (Fig. 4.8a), and the strong modes centered at 37 and 132 cm−1 in RL are the
bulk Eg phonons (Fig. 4.8b), consistent with the previous Raman studies [39, 40]
and calculations [75].

The broad feature at about 330 cm−1 in RR is possibly due to second-order
scattering of the A

(2)
1g phonon, broadened due to the large downward dispersion of

the phonon branch [75]. Similarly, the broad feature observed around 300 cm−1 in
RL is assigned to two-phonon excitation, A

(2)
1g + E

(2)
g . The broad feature at about

245 cm−1 (Fig. 4.8b, marked by arrow) was previously assigned to the 2D stretching
mode of Se atoms on the surface [76]. However, we do not observe the reported
resonance effect of this mode with near-infrared excitation (Fig. 4.9). Notice that
this mode’s energy is also consistent with the two-phonon excitation of A

(2)
1g +E

(1)
g .

In order to distinguish the broad features from electronic origin, such as
excitations from the topological surface states, we compared the results with indium
doped Bi2Se3 in Fig. 4.8. Indium doping was shown to increase the carrier density
and suppress the topological surface states in Bi2Se3 [29, 77]. Here, we collected
data from bulk single crystals and MBE grown In2Se3/Bi2Se3 superlattices, where
indium doping is achieved through diffusion in the superlattices [78]. In all indium
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Fig. 4.9 The excitation
dependence of scattering
intensity in the XX
polarization geometry,
measured at 10 K from a bulk
Bi2Se3 single crystal, plotted
on a semi-log scale. The blue,
green, and pink lines
correspond to laser excitation
energy of 476, 514, and
780 nm, respectively. Inset:
enlarged plot around the A

(3)
1

mode. The black lines are fit
to Fano line shape in Eq. (4.7)
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doped samples, the broad features show the same intensity, suggesting their origin
unrelated to the topological surface states. This feature is slightly weaker in the
superlattice sample #8, despite that the first-order phonon modes are still sharp and
strong. However, this is likely mainly due to the indium atom diffusion into the
Bi2Se3 layer, which breaks the translation symmetry and therefore further broadens
the multi-phonon mode. The diffused indium atoms also lower the local crystal
symmetry in the Bi2Se3 layers, which therefore allows vibration modes with A1g

and A1 symmetries to appear in the RL geometry, which is otherwise forbidden for
the crystal symmetry of Bi2Se3 (Fig. 4.8b, marked by asterisks). The small feature
at 110 cm−1 in RR is due to a strong phonon of α-In2Se3 layers [74] (indicated by
arrow in Fig. 4.8a).

In addition to the strong bulk first-order Raman phonons and the broad features,
we see additional sharp modes that are about 20 times weaker than the bulk phonons.
In Fig. 4.8a, two such features at 136 and 158 cm−1 are seen in all samples in RR
scattering geometry, labeled A

(2)
1 and A

(3)
1 , respectively. In the bulk single crystal

sample #14, we observed a mode at about 60 cm−1, which we label as A
(1)
1 . We

associate these three features with vibration modes at the crystal surface, to be
discussed in the RR polarization for the Sample #14 in the next section. We also
noticed several sharp features below 50 cm−1 in samples #8 and #10 in RR, which
are possibly zone folded phonons. In the RL scattering geometry, we observed two
weak features at 67 and 126 cm−1, labeled E(1) and E(2), respectively (Fig. 4.8b).
The energies of these modes are close to the strong bulk phonons and therefore
require higher resolution to distinguish them.

Excitation Dependences

In Fig. 4.9 are the Raman spectra of the bulk sample at different excitation wave-
lengths at 10 K. The spectra were obtained in the XX polarization. As in Fig. 4.8,
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we observe an additional peak at 158 cm−1, which we refer to as A
(3)
1 . However,

note that the mode is more asymmetric when 780 nm excitation wavelength
is used. While the bulk phonons show little resonance effect, the A

(3)
1 phonon

displays antisymmetric line shape with 780 nm excitation, reminiscent of a Fano line
shape [79] (Fig. 4.9, inset). This is an indication that the A

(3)
1 phonon is interacting

with a continuum. This was overlooked in the previous Raman studies and may be
related to the 20 meV “kink” in the topological surface state’s energy dispersion
curve reported by some ARPES measurements [69, 70].

The observation of Fano line shape is a clear evidence for the existence of
underlying electronic continuum in the A1 symmetry channel, which interacts
with the A

(3)
1 phonon [79, 80]. The excitation dependence also suggests resonance

enhancement of the electronic continuum with near-infrared wavelength, consistent
with the reported surface states at about 1.6 eV above the Fermi energy [81, 82].
Fitting the 780 nm data with Eq. 4.48 in [80]:

I (ω) = πρT 2
e (ω0 − ω − V Tp/Te)

2

(ω0 − ω + V 2R)2 + (πV 2ρ)2 (4.7)

yields electron–phonon interaction strength V ≈ 2.6 cm−1, and phonon energy
ω0 ≈ 158 cm−1. Here we assumed that the electron DOS ρ is a constant in
the relevant energy window and neglected the real part of the electronic Green’s
function R. Tp and Te are the phonon and electronic continuum Raman transition
matrix elements, respectively.

Symmetries of the Phonon Modes

To further understand the observed phonon modes, we measure the Raman response
in four scattering geometries of the D3d and C3v point group as listed in Table 4.2
(Fig. 4.10a). The intensity contributed by each symmetry channel in different
scattering geometries is dictated by the Raman tensors [51, 52], and the results for
D3d and C3v groups are listed in Table 4.2. Therefore, by obtaining polarized Raman
spectra in four proper scattering geometries, we can separate the measured Raman
response from each symmetry channel.

χ ′′
A1g(ω) + χ ′′

A1(ω) = χ ′′
XX(ω) − 1

2
χ ′′

RL(ω)

χ ′′
A2g(ω) + χ ′′

A2(ω) = χ ′′
YX(ω) − 1

2
χ ′′

RL(ω) (4.8)

χ ′′
Eg(ω) + χ ′′

E(ω) = 1

2
χ ′′

RL(ω).

The results are shown in Fig. 4.10b. We notice that no lattice vibrational mode
is observed in the A2g and A2 symmetry channels. This is because the Raman
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different symmetry channels, obtained from data in (a). The bulk phonons are marked by dashed
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tensors for these two channels are antisymmetric and commonly correspond to
pseudovector-like excitations [51, 83, 84], which is forbidden for phononic Raman
scattering in Bi2Se3. Since the signals in A2g and A2 channels are expected to be
zero, we can claim that all vibration modes appearing in RR have either A1g or A1
symmetry (Table 4.2).

The A
(2)
1 mode happens to have energy very close to the E

(2)
g phonon, making

it particularly difficult for spectroscopic experiments to distinguish. Here, we
utilize the symmetry properties to separately detect them with polarized light.
The polarization leakage of optical elements is precisely measured and removed
(Appendix), and thereby excluding the possibility of A

(2)
1 being a trivial polarization

leakage from the E
(2)
g phonon.

To distinguish surface modes that are particularly weak and close in energy to the
bulk phonons, we take high resolution spectra from a carefully prepared bulk crystal
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#14, cleaved in nitrogen environment. We show in Fig. 4.11 the spectra taken at 13 K
in RR and RL scattering geometries, where the smoother low resolution (2.8 cm−1)
data is overlapped with the high resolution (0.9 cm−1) spectra. Besides the more
pronounced A

(2)
1 and A

(3)
1 modes already visible in Fig. 4.10, we see a few additional

features in the high resolution data: (1) A mode centered at 173 cm−1 appearing as a
shoulder to the A

(2)
1g bulk phonon in RR geometry (Fig. 4.11a), which we designate

as A
(4)
1 . (2) Another mode centered at 126 cm−1 appearing as a shoulder to the

E
(2)
g bulk phonon in RL geometry (Fig. 4.11b), which we designate as E(2). (3) The

mode A
(3)
1 shows broadened peak structure. This cannot be due to splitting of an

A-symmetry phonon, e.g., lowering of symmetry, since A1 is a one-dimensional
representation. This can be explained as due to Fano interference, which become
more pronounced with infrared excitation (Fig. 4.9).
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Removal of Polarization Leakage

Due to the weakness of the surface vibration modes in Raman spectroscopy, possible
polarization leakage arising from optical elements has to be carefully measured and
removed, in order to avoid confusion with the weak surface modes.

The degree of leakage is determined from the A
(1)
1g and A

(2)
1g bulk phonons of

single crystal samples at room temperature. The removal of polarization leakage
is done by subtracting intensity from the orthogonal polarization geometry, i.e.,
χ ′′

YX(ω) = χ ′′
YX(ω) − α · χ ′′

XX(ω), where χ ′′
YX(ω) and χ ′′

XX(ω) are raw data taken
in YX and XX polarization geometries, respectively, and α is the leakage ratio due
to the limitations of polarization optics. It is reasonable to suggest that the same
ratio also applies to XX polarization geometry: χ ′′

XX(ω) = χ ′′
XX(ω) − α · χ ′′

YX(ω).

Similarly, we have χ ′′
RL(ω) = χ ′′

RL(ω) − β · χ ′′
RR(ω) and χ ′′

RR(ω) = χ ′′
RR(ω) −

β · χ ′′
RL(ω) for the circularly polarized geometries, where β is the leakage ratio

due to the limitations of the broadband quarter wave plate and alignment of the
Berek compensator. The ratios α and β are in general a weak function of ω,
but in a narrow energy window as in this study, they can be safely assumed as
constants. In order to avoid confusion from contributions of surface phonons, we
chose YX and RL geometries as our reference for the determination of α and
β. In these two geometries, only E

(1)
g and E

(2)
g bulk phonons are expected to be

present, the E symmetry surface modes are extremely weak and close to the bulk
phonons (Fig. 4.11), and therefore they do not raise concern for the determination of
α and β.

In Fig. 4.12, we show spectra of unprocessed raw data and polarization leakage
removed results taken at 300 K from the ab surface of a Bi2Se3 thick film in black
and red lines, respectively. The leakage intensity of A

(1)
1g and A

(2)
1g bulk phonons in

raw data taken with YX and RL geometries can be fully removed with leakage ratios
α = 0.004 and β = 0.015, respectively. These values are within the specification of
used broadband polarization optics.

The value of α depends only on the wavelength of light, and therefore the
same value α = 0.004 is used for all samples and temperatures measured with
532 nm excitation. The value of β depends critically on the alignment of the Berek
compensator, which may vary between experiments and has to be determined using
the method described above in each experiment. In this study, the value of β is
always within the range 0.015 ± 0.005.

4.2.2 Discussion

At the crystal surface of Bi2Se3, the lattice structure is distorted along c-axis due to
the abrupt reduction of the interlayer van der Waals force that binds the crystal
together and is calculated by density functional theory (DFT) to be about 10%
along c-axis [68]. Additionally, the observation of two-dimensional electron gas



4.2 Surface Phonons 117

0

2

4

0

2

4

0

2

4

6

8

0 50 100 150
0

2

4

6

8

χ'
'(ω

)(
ar

b.
un

it)

(b)

(a)
Raw YX
Subtracted

300 K
Sample #2

E(2)
gE(1)

g

χ'
'(ω

)(
ar

b.
un

it)

Raw RL
Subtracted

A(1)
1g A(2)

1g

χ'
'(ω

)(
ar

b.
un

it)

(d)

(c)
Raw XX
Subtracted

χ'
'(ω

)(
ar

b.
un

it)

Raman shift (cm-1)

Raw RR
Subtracted
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(b) RL, (c) XX, and (d) RR polarization geometry from the ab surface of sample #2 at 300 K, with
532 nm excitation

formed on Bi2Se3 surface also supports the picture of subsurface van der Waals
gap expansion [85–87]. However, finite phonon DOS exist across the entire energy
range in Bi2Se3 [75], allowing the surface modes to decay into bulk phonon modes.
Therefore, the surface mode is not entirely “peeled off” from the bulk bands. Then
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the hybridization between surface and bulk bands results in a “surface resonance”
with slightly lower energy than the bulk phonon, as illustrated in Fig. 4.2. This
is markedly a different interpretation from the previous reports, where additional
phonon peaks were observed in exfoliated flakes of only a few QLs thickness.
In these thin samples, there is little sense in distinguishing surface from bulk, as
signal from each layer contributes to distinct peaks. This is well-studied in few
layers of graphite and graphene samples [88]. We can clearly see this effect in our
thinnest sample #8, where the phonons are broadened to the extent that one cannot
distinguish bulk from surface resonance peaks. But with increasing thickness, a clear
intensity “shoulder” develops that signifies the formation of bulk phonon bands and
the separation of surface resonance at the BZ center.

Due to inversion symmetry breaking at the crystal interface, the surface reso-
nances from the Raman active A1g and IR active A2u phonons are both expected
to appear in the A1 symmetry (C3v group), corresponding to out-of-plane atomic
motion. The energies of such surface modes are usually slightly lower than the
corresponding bulk phonons. This is consistent with the four A1 modes we observed
(Fig. 4.11a). From the energies of these A1 modes, we conclude that A

(1)
1 and

A
(4)
1 are associated with the bulk phonon modes A

(1)
1g and A

(2)
1g , respectively. The

measured energy of the A
(1)
1 mode is somewhat different than the previously

reported value of 68 cm−1 by time-resolved ARPES [68] but close to what was
suggested by transport measurements [67]. We believe that this difference may
be partly due to surface quality variation. ARPES measured sample is usually
cleaved in ultrahigh vacuum, whereas the surface in this study is cleaved in nitrogen
environment. This may also explain why this mode was not observed in the MBE
samples (Fig. 4.8), where the sample is unavoidably exposed to air for a few
minutes during the transfer between MBE chamber and Raman cryostat. The A

(4)
1

mode appears as a shoulder to the A
(2)
1g bulk phonon, requiring higher resolution

to distinguish from the bulk mode, and therefore was overlooked in the previous
Raman study [40].

In comparison, the surface modes A
(2)
1 and A

(3)
1 have higher intensity and are

better resolved. One possibility for this difference is that the bulk counterparts of
these resonances are the IR active A

(1)
2u and A

(2)
2u phonons, as the measured energy

is close to the calculated values (Table 4.3). Since these bulk modes are not Raman
active, we were able to better resolve the surface resonance. Another possibility
is that the phonon DOS is practically zero at these energies in the A1 symmetry
channel, and the surface vibration modes are truly localized. Distinguishing these
two scenarios is in fact experimentally nontrivial, especially since the experimental
values of the A

(1)
2u and A

(2)
2u bulk phonon energies are yet unknown.

Since the in-plane symmetries are mainly preserved as the DFT calculated
atomic surface distortion is purely out of plane [68], one would not expect surface
phonon with E symmetry (C3v group) for Bi2Se3. However, the in-plane bonding
potential is also modified by having distortion along c-axis, and therefore the phonon
frequency at surface is still slightly different than the bulk value. If the modification
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is tiny, the E modes are expected to be weak and close to the bulk phonons. In
Fig. 4.8b and 4.11b, we can see hints of two additional modes, labeled by E(1)

and E(2). The energies of these modes are in fact close to the measured values
of E

(1)
u and E

(2)
u bulk phonons [36, 37] and are consistent with the previous Raman

study [40] (Table 4.3). However, the frequency of E1 is slightly higher than E
(1)
u ,

which is against the expectation from a surface resonance. This may reflect the fact
that this is an in-plane mode, orthogonal to the lattice distortion direction. Or, this
may be indicative of nontrivial electron–phonon interaction with the surface states,
and worth further studying.

4.3 Chiral Spin Modes

Ferromagnetic systems and partially spin-polarized Fermi liquids support collective
spin excitations (spin waves), in which all electron spins respond coherently to
external fields, and the “glue” that correlates the phases of individual spins is
provided by the exchange interaction. In nonmagnetic materials where inversion
symmetry is broken but time-reversal invariance remains intact, strong spin-orbit
coupling (SOC) may play the role of an effective magnetic field, which locks
electron spins and momenta into textures. This phenomenon is encountered in three-
dimensional (3D) topological insulators (TIs), which harbor topologically protected
surface states [13, 15, 30, 32, 89]. The surface band structures of TIs have been a
focus of intense studies, both from the fundamental point-of-view [8, 90–95] and
for potential spintronics device applications [96–103]. However, the many-body
interactions leading to collective effects still remain largely unexplored. An essential
aspect of this physics is an interplay between the Coulomb interaction and SOC,
which is expected to give rise to a new type of collective spin excitations—chiral
spin waves [104–110].

The spectrum of topological surface states (Eq. 4.4) consists of hexagonally
warped electron- and hole-like Dirac cones of opposite chirality. A light-induced
excitation from the occupied state in the hole cone to an empty state in the
electron cone is accompanied by a spin-flip of the quasiparticle (Fig. 4.13b).
Such direct transitions form a continuum that starts at the threshold energy ω−
(Fig. 4.13c) [111, 112].

Due to the Pauli exclusion principle, two electrons in the triplet state avoid each
other, thus reducing the energy of the Coulomb repulsion. Therefore, the repul-
sive Coulomb interaction between electrons translates into an attractive exchange
interaction between their spins, leading to bound states below the continuum of
spin-flip excitation, i.e., chiral spin modes. In general, there are three such modes
(red curves in Fig. 4.13c), which correspond to linearly polarized oscillations of the
magnetic moment in the absence of the external magnetic field [106, 107, 109].
At q = 0, there is a doubly degenerate mode with an in-plane magnetic moment
and a transverse mode with an out-of-plane moment, with energies ωs,|| and ωs,⊥,
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Fig. 4.13 (a) The band structure of Bi2Se3 around the Brillouin zone center, reconstructed from
ARPES results in [81, 113]. The low-energy Dirac cones of surface states (SS1) are described by

Eq. (4.4) with parameters m∗ ≈ 0.066 eV−1Å
−2

, v1 ≈ 2.4 eVÅ, and vw ≈ 25 eVÅ3 . The upper
and lower Dirac cones of opposite chirality are shown in red and blue, whereas the bulk bands
are shown in gray. A pair of unoccupied surface Dirac cones (SS2) resides about 1.8 eV above
SS1 [81]. The arrows illustrate a resonant Raman process stimulated by an incoming photon with
energy �L, in which an electron is promoted from the lower to the upper Dirac cone of SS1,
through resonant scattering via the intermediate states, SS2. The energy difference between the
excited and ground state defines the Raman shift, ω. (b) Enlarged view of SS1 around EF with
arrows showing the spin textures, where ω− is the threshold energy for direct transitions between
occupied states in the lower Dirac cone and available states of the upper cone. (c) Schematic
dispersions of the particle–hole continua in the spin (red) and charge (blue) channels, surface
plasmon [114] (blue line), and collective spin modes [106] (red lines)

respectively. Because the chiral spin modes are below the continuum, they are
expected to remain long-lived even at elevated temperatures [115]. These modes
are in essence (zero-field) spin waves that can be measured by resonant Raman
scattering because they couple to the electromagnetic field through antisymmetric
Raman tensors [109].

4.3.1 Results

As-grown Bi2Se3 is usually electron doped due to naturally formed Se vacan-
cies [116]. In this study, we use characterized samples with low carrier concen-
tration. The Fermi energy (EF ) is determined by scanning tunneling spectroscopy
to be about 150 meV above the Dirac point of SS1 (Fig. 4.13b) [117].

The polarized Raman spectra were acquired in a quasi-backscattering geometry
from the ab surface of Bi2Se3 single crystals grown by modified Bridgman method.
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Fig. 4.14 The intensities of
secondary emission are
measured in circular and
linear (with respect to
crystallographic axes)
scattering polarization
geometries, as shown
pictorially next to the figure
legend in panel (d), at 24 K
with (a) 521, (b) 647, (c) 676,
and (d) 752 nm excitations.
The vertical solid gray line
indicates the sharp 150 meV
peak, most pronounced for
the incident photon energy of
1.83 eV, which is the closest
to the energy difference
between SS1 and SS2
(Fig. 4.13a). The dotted black
line in (a) is a guide to the eye
showing the energy threshold
for the surface-to-bulk
excitations. The hatched areas
in (b) and (c) are Lorentzian
fits to the excitonic
photoluminescence peaks
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We use 521, 647, 676, and 752 nm lines of a Kr+ laser for excitation, where the spot
size is roughly 50 × 50 μm2 and the power is about 10 mW. The scattered light is
analyzed by a custom triple-grating spectrometer.

Excitation Profile

In Fig. 4.14, we show spectra of secondary emission for four scattering geometries
employing both linear and circular polarizations. Of the four excitations, the 521 nm
one is the farthest from near-resonant transition between SS1 and SS2, while the
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Fig. 4.15 Secondary emission intensity measured in RR and RL polarization geometries at 24 K
for (a) 647, (b) 676, and (c) 752 excitation energies, plotted against scattered photon energy. The
gray solid line marks 1.54 and 1.64 eV, where the exciton peaks centers’ coincide for 647 and
676 nm excitations, indicating that the peaks are due to photoluminescence of excitonic states

676 nm one is the closest. The spectra contain contributions from electronic Raman
scattering and exciton photoluminescence. The latter is present for all polarizations
and can be subtracted from the spectra. The signal below 50 meV is dominated by
phonon modes that are discussed elsewhere [1].

Luminescent Background Subtraction

Figure 4.15 shows the intensity of secondary emission measured with RR and RL
polarizations at 24 K for 647, 676, and 752 excitation energies, plotted as function
of emission photon energy. The exciton emission centers at 1.54 eV for 647 and
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676 nm excitations and has about the same intensity for both RR and RL scattering
geometries. Another small peak is at 1.64 eV for both excitation and is likely another
state related to the 1.54 eV exciton.

In typical materials, exciton states have energies lower than the interband
transition edge by the amount of the binding energy. The excited electron–hole
pairs relax to the exciton states, which eventually decay back to the ground state
through photon emission if symmetry allows. In some cases, if the photon emission
is not allowed and the exciton is said to be “dark.” The exciton peaks are absent for
752 nm excitation spectra, suggesting that the corresponding interband transition
has a threshold of about 1.8 eV, which puts the binding energy to about 0.3 eV.

Bi2Se3 is commonly understood as a small gap semiconductor with the Fermi
surface close to the bulk conduction band edge, therefore the observation of a well-
defined exciton peak in the near-infrared range is quite surprising, suggesting an
optical band gap of about 1.8 eV, much larger than the semiconductor gap. Since
direct gap is required for exciton radiative emission, the most probable interband
transition is between the M-shaped bulk valence band and a W-shaped conduction
band about 1.5 eV above the Fermi energy [81] (Fig. 4.13a). The exciton most likely
forms below the band minima at |k| ≈ 0.1 Å−1.

To remove photoluminescence background from the measured spectra, we fit the
1.54 and 1.64 eV exciton peaks with a Lorentzian function, as shown by the hatched
peaks in Fig. 4.14. We also subtract a small constant background from all spectra to
account for other photoluminescence contribution.

Temperature Dependence

The most interesting feature of the spectra is a sharp peak around 150 meV observed
in the XY and RR geometries. The peak is the strongest for the 676 nm excitation,
which is in near resonance with the transition between SS1 and SS2, thus confirming
the surface origin of the observed signal.

In order to better understand the origin of the 150 meV peak, we subtract the
photoluminescence contributions and then utilize the symmetry properties of the
Raman tensors to separate the measured spectra into the E2, A1, and A2 symmetry
channels of C6v point group (Table 4.2). In Fig. 4.16, we plot the temperature
dependence of Raman response R(ω, T ) in three symmetry channels. It is clearly
seen that the 150 meV peak is associated with the A2 symmetry channel. The
continuum broadens and becomes invisible above 150 K, but the peak is still well-
defined even at T = 300 K. The temperature dependences of the chiral spin mode
intensity (area under the peak), FWHM, and energy (peak center) are shown in
Fig. 4.17. The parameters are obtained from fitting the data to the Lorentzian line
shape. The width of the spin mode saturates below about 150 K, indicating that the
main damping mechanism of the spin mode is likely due to disorder. In general,
the energy and width of the chiral spin mode is well-described by the theoretical
simulation that incorporates finite temperature effects only via thermal smearing of
the Fermi functions and neglects inelastic damping mechanisms. The decreasing
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Fig. 4.16 Temperature dependence of the symmetry-separated Raman response R(ω, T ) in the
(a) E2, (b) A1, and (c) A2 symmetry channels, measured with the near-resonant 676 nm excitation.
The photoluminescence background was subtracted from the raw data. The gray solid line locates
the position of the sharp peak that is present only in the A2 channel. (d) Calculated R(ω, T ) in the
A2 channel with the dimensionless interaction coupling constant u ≈ 0.6 and impurity broadening
of 	 = 8 meV was extracted from the data and used in the calculation. The lines are shifted
vertically for clarity. Inset: Zoom-in of the calculated R(ω, T ) without vertical shift, showing the
spin-flip continuum with a threshold energy of 260 meV
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Fig. 4.17 Temperature
dependence of (a) the
intensity, (b) full width at half
maximum (FWHM), and
(c) peak center of the chiral
spin mode in Fig. 4.16 by
fitting to a Lorentzian line
shape. The error bars reflect
one standard deviation of the
fit
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intensity at elevated temperatures is not captured in the above temperature effects
and is likely an indication of unaccounted spin decay channels, such as through the
surface phonons [1].

4.3.2 Discussion

The basis functions of the A2 representation of C6v transform as the z component
of the angular momentum, which is a pseudovector [53]. This suggests that the
observed peak in the A2 channel corresponds to a spin mode (marked by ωs,⊥ in
Fig. 4.13c) with an out-of-plane magnetic moment (also a pseudovector).

To quantify the assignment of the 150 meV peak to the out-of-plane chiral spin
mode, we calculate the Raman response of surface chiral states. We are interested in
spin-flip resonant Raman processes between states near the Fermi level in SS1 and
the states in SS2. Two resonance transitions are possible: an electron from the lower
cone of SS1 can be transferred into either the lower cone or upper cone of SS2 and
can come back to the upper cone of SS1, producing a particle–hole pair.
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A characteristic feature of Bi2Se3 is that the lower cones of SS1 and SS2 are
almost perfectly nested: a fit to the ARPES data in [81, 113] gives v1 = 2.4 eVÅ
and v2 = 2.0 eVÅ . Therefore, the “hole-to-hole” transition in the Raman vertex is
essentially dispersionless, and the corresponding transition probability is enhanced
by a factor of ≈ 1/(Eg − �L)2, whereas the “hole-to-electron” term is small. This
explains why only one resonance is observed in the experiment.

The Raman response function in the A2 symmetry channel can now be written as

R(ω, T ) ∝ χ ′′
zz(ω, T )/(Eg − �L)2, (4.9)

where χ ′′
zz is the imaginary part of the zz component of the spin susceptibility tensor

and has a continuum of spin-flip excitations and a pole corresponding to a transverse
collective mode, ωs,⊥ (Fig.4.13). A simple result for the frequency of this mode can
be obtained if one neglects hexagonal warping and considers the weak-coupling
limit. In this case, ωs,⊥ = 2EF

[
1 − 2 exp(−4/u)

]
, where u ≡ UEF /2πh̄v2

1 � 1
is the dimensionless coupling constant [2].

For a more general case, which includes the realistic band structure and finite
temperature, the Raman response has to be evaluated numerically. The results of
this calculation are shown in Fig. 4.16d. With the band structure parameters obtained
from ARPES measurements [113], the only two fitting parameters are the exchange
coupling constant, fixed at u ≈ 0.6 to reproduce the mode frequency at 15 K, and
the impurity scattering rate chosen as 	 = 8 meV. Comparison of the measured and
computed spectra (Fig. 4.16c and d, correspondingly) shows that the model well
describes not only the overall shape of the signal but also its evolution with the
temperature. In the sample measured, the threshold for the spin-flip continuum is
supposed to be at ω− ≈ 260 meV. However, the onset of this continuum is difficult
to observe because its spectral weight is transferred into the collective mode; in the
inset of Fig. 4.16d, we show a zoom into the computed crossover region between
the collective mode and the continuum.

A quantitative agreement between the theory and experiment gives us confidence
in that the observed 150 meV sharp peak in the A2 symmetry channel is indeed
a transverse chiral spin mode. The fact that the measured intensity decreases
with increasing temperature faster than the calculated spectra is an indication of
unaccounted spin decay channels at elevated temperatures, e.g., through interaction
with surface phonons [1].

Transitions Between Surface States and Bulk Bands

In Fig. 4.14, the spectrum for the non-resonant 521 nm excitation shows no sharp
peaks but a broad feature with an onset at about 200 meV. This energy scale
corresponds to the onset of transitions between the surface Dirac cone and the bulk
states. Such transitions do not need to flip spins and thus appear also in the XX
scattering geometry, which contains the fully symmetric channel.
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Figure 4.18 is a realistic illustration of the Bi2Se3 band structure reconstructed
from ARPES measurements [113]. The surface state dispersion is [23]

ESS(k) = � + k2

2m∗ ±
√

v2
F k2 +

(
2v3
vF

)2
k6 cos2 3θ

≈ � + k2

2m∗ ± vF k + 2

(
v2

3
vF

)
k5 cos2(3θ) (4.10)

where ± denote the upper and lower Dirac cones and θ is the azimuth angle of
momentum k with respect to the x axis (	 − K). Fitting data in [113] to Eq. (4.10)

gives m∗ ≈ 0.066 eV−1Å
−2

, vF ≈ 2.4 eVÅ , and v3 ≈ 25 eVÅ3. One can readily
see that the energy of a direct transition from the lower to upper Dirac cone is

2
√

v2
F k2 + (

2v3
vF

)2k6 cos2(3θ). In samples measured, � is determined by tunneling
spectroscopy [117] to be about −150 meV, and therefore the Fermi momentum
kF ≈ 0.054 Å−1 along kx , thus resulting in a threshold energy ω− ≈ 260 meV.

The direct transition energy between SS1 and the bulk conduction band is given
by ε(k) = ECB(k) − ESS(k), where ESS(k) is given by Eq. (4.10), and the bulk
conduction band dispersion follows a quasi-2D parabolic model [118]:

ECB(k) = E0 + k2||
2m∗||

+ k2⊥
2m∗⊥

, (4.11)

where E0 ≈ 130 meV is determined by EF and the relative position between SS1

and bulk conduction band minimum [113, 117], m∗|| ≈ 0.03 eV−1Å
−2

is the in-
plane effective mass, determined from fitting the ARPES data in [113] to quadratic

Fig. 4.18 Transitions
between surface states and
bulk conduction band. Band
structure near the 	 point and
Fermi surface, reconstructed
from ARPES
measurements [113]. The
blue and red lines denote the
lower and upper Dirac cones,
respectively, whereas the bulk
bands are shown in gray. In
the measured sample, the
Dirac point is about 150 meV
below the Fermi energy EF
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dispersion. In the measured sample where kF ≈ 0.054 Å−1 along kx , the threshold
energy Emin ≈ 180 meV, similar to what was observed in Fig. 4.14a.

4.4 Photoluminescence

As we have demonstrated in the previous section, spin–orbit coupling (SOC) can
play a central role in emerging phenomena in condensed matter physics, e.g., 3D
topological insulators (TIs) [13, 15, 21, 32], valleytronics [119–121] and Ising
superconductivity [122, 123]. In this section, we show surprising results where
two photoluminescence (PL) peaks are observed in the visible range in Bi2Se3.
Figure 4.20a shows the right and left circularly polarized (CP) secondary emission
spectra, indicated by IRR(ω, T ) and IRL(ω, T ), respectively. At low temperature,
two PL peaks were detected in the visible range, where the peak center energies
remain fixed with changing excitation. While broad PL features are not uncommon
even in metals, a well-defined PL peak usually requires a minimum in the e–h band,
which is unexpected to appear in the visible range for a small gap semiconductor,
such as Bi2Se3.

The peak structure in the PL spectra is usually an evidence of fixed energy e–h
bound states, known as excitons, that couple to the electromagnetic field through
radiative decays. Due to phase relaxation during the thermalization of e–h pairs and
the formation of excitons, the PL is usually unpolarized.

4.4.1 Circular Polarized Photoluminescence

Polarized PL is an indication of excitons favoring certain “optical orientation”
than the other, which is usually due to underlying symmetry breaking in the
system, leading to removal of band degeneracies. For example, spin polarization of
electron bands can be induced by SOC through Rashba [124] and Dresselhaus [125]
effects in solids without inversion symmetry, or in crystals with specific atomic
site asymmetries [126]. The spin polarized energy bands lead to various novel
collective phenomena, e.g., chiral spin modes [115] and chiral excitons [127],
posing an emerging playground for studying interplay between spin and other
degrees of freedom in solids [120]. In particular, the chiral excitons in TMD
monolayers display a high degree of “optical orientation,” allowing them to be
efficiently and selectively excited by CP photons [120, 128, 129], with applications
in optospintronics [129, 130].

The study of exciton’s “optical orientation” through measuring polarized PL
spectra dates back to the early 1970s [131–133], as an efficient way of probing
the spin polarizations of electron bands in III–V and II–VI semiconductors [134].
The excitons originating from spin polarized electrons and holes are characterized
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by its azimuth angular momentum, Sz = ±1. The oppositely oriented excitons are
thus independently excited by circularly polarized photon of opposite helicity [135].
Since the electronic bands are spin polarized, the exciton orientation is preserved
during thermalization, eventually leading to CP PL at electron–hole (e–h) recom-
bination. Therefore, studying the polarized PL spectra is particularly interesting in
a TI material, where information of the surface state spin dynamics is particularly
important due to its potential application in spintronics [96, 103].

4.4.2 Results

In Bi2Se3, the large Rashba SOC on the surface results in three spin polarized
bands at the Brillouin zone center (	-point), shown as red lines in Fig. 4.19a: the
topologically protected surface Dirac cone at the Fermi level (SS1) [21, 89], the

Fig. 4.19 The band structure around BZ center in Bi2Se3. (a) The electronic band structure near
the 	 point was inferred from ARPES measurements and DFT calculations [81, 87]. The Rashba
surface states (RSS) and the unoccupied topological surface states (SS2) are in red, with the in-
plane spin orientations denoted by � and ⊗. The topological surface states (SS1) near Fermi energy
(EF ) are shown in light red. The bulk bands do not contribute to the CP PL and are shown in gray.
(b) DFT calculated band structure in a slab geometry with 32 Åvacuum layer, shown along the 	-K
cut of the Brillouin zone, with spectral weight projected onto the top quintuple layer for Jz = 1/2.
The blue squares highlight the three surface bands labeled in (a)
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Fig. 4.20 Photoluminescence spectra and noninteracting e–h continuum of relevant interband
transitions. (a) The CP PL spectra measured at 14 K, with right-CP 2.65 eV excitation. Right- and
left-CP PL are designated by IRR(ω, T ) in red and IRL(ω, T ) in green, respectively. The black line
shows unpolarized PL background, f (ω, T ). The intensity in the 1.8–2.6 eV range is multiplied
by factor of 3 for clarity. (b) The dispersion relation of non-interacting electron–hole pairs for
possible transitions from RSS to SS2, with zero momentum transfer. The only transition consistent
with excitation energy used in this study is shown in blue, while others are shown in gray. With
finite interaction, the excitonic bound states form below the band minimum and are denoted by the
total angular momenta of the electron–hole pairs, Jz

high energy unoccupied surface states (SS2) [81], and the fully occupied Rashba
surface states (RSS) [87, 136].

In the following, we use continuous wave visible laser light to promote resonant
interband transition between RSS and SS2 (Fig. 4.19a) and study polarized sec-
ondary emission spectra in the backscattering geometry. All of the results reported
below are reproducible in the “time reversed” geometry, i.e., switching the excitation
polarization leads to switching of PL polarization with the same spectral line shape,
and so we will henceforth focus on the results with right-CP excitation.

In Fig. 4.20a, we can further separate IRR(ω, T ) and IRL(ω, T ) into two spectral
contributions: (1) a broad unpolarized emission band, f (ω, T ), and (2) a nar-
rower peak that is almost fully polarized, with intensity defined as LR(ω, T ) =
IRR(ω, T ) − f (ω, T ). We note that f (ω, T ) and LR(ω, T ) inherit distinct line
shapes and therefore likely originate from different photoemission processes. We
will henceforth focus on the polarized PL, LR(ω, T ).
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The broad unpolarized background f (ω, T ) can be easily removed from the
spectra as detailed in the following. With right circularly polarized (CP) excitation,
the measured photoluminescence (PL) intensities can be decomposed into two parts:

IRR(ω, T ) = LR(ω, T ) + f (ω, T ),

IRL(ω, T ) = LL(ω, T ) + f (ω, T ), (4.12)

where LR(ω, T ) and LL(ω, T ) denote right- and left-CP PL, respectively, and
f (ω, T ) denotes the featureless unpolarized broad background. We assume an
energy independent depolarization ratio r(T ) = LL(ω,T )

LR(ω,T )
. Inserting r(T ) into the

above expression of IRL(ω, T ), we can write the unpolarized emission as

f (ω, T ) = IRL(ω, T ) − r(T ) · IRR(ω, T )

1 − r(T )
. (4.13)

Then, r(T ) was estimated by imposing that f (ω, T ) is a smooth function, and we
arrive at

LR(ω, T ) = IRR(ω, T ) − IRL(ω, T )

1 − r(T )
. (4.14)

Excitation Profile

In Fig. 4.20a, we see that a small fraction of LR(ω, T ) is also present in the
orthogonal polarization, LL(ω, T ) = IRL(ω, T ) − f (ω, T ) ≡ r(T )LR(ω, T ),
where r(T ) is a “depolarization ratio.” We find that the depolarization ratio r(T ) ≈
0.1 for single crystals measured with 2.6 eV excitation and increase to about 0.3 with
2.8 eV excitation (Fig. 4.21c). Such high degree of CP PL can only be explained by
spin polarized bands resulting from SOC, which is only possible on the surface
states due to the inversion symmetric bulk crystal structure of Bi2Se3.

Figure 4.21b shows the integrated PL intensity,
∫ 2.46 eV

1.95 [IRR(ω, T ) −
IRL(ω, T )]dω, versus excitation measured at about 15 K. Within the energy range
where we see the CP PL, the only possible surface transition is from RSS to
SS2. Figure 4.21c plots the depolarization ratio r(T ) against excitation energy.
Assuming that the depolarization process is largely due to energy relaxation in the
e–h continuum, then a linear extrapolation of r(T ) to zero suggests the e–h band
minimum at 2.48 eV, which is very close to the noninteracting e–h energy estimated
from the band structure (Fig. 4.20b). Below this energy, 2D excitons can only be
resonantly excited, and the “hot luminescence” from the excitons is in principle
100% polarized. In this study, we will only discuss the PL from excitons created
through e–h pairs.
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Fig. 4.21 (a) PL intensity measured at about 15 K is plotted against photon energy for 4 different
excitations: ω0 =2.57, 2.60, 2.65, and 2.77 eV. The light and dark colored lines denote IRL(ω, T )

and IRR(ω, T ), respectively. The smooth background f (ω, T ) is plotted as black lines. (b) The
integrated polarized PL intensity,

∫ 2.46 eV

1.95 [IRR(ω, T )−IRL(ω, T )]dω (shaded in blue in Fig. 4.20a)
versus excitation energy measured at about 15 K. (c) The depolarization ratio r(T ≈ 15 K) is
plotted against excitation energy. The red line is a linear extrapolation to r(T ) = 0, suggesting a
minimum excitation energy of 2.48 eV

The band minimum suggests the binding energy for the exciton states, denoted
by |ER/L

1 〉 in Fig. 4.20b, to be about 0.2 eV. However, this is an underestimation of
the electron–hole continuum edge. Because part of the depolarization is likely due
to magnetic impurity scattering or local strain on the sample [137]. Thus the binding
energy could be slightly higher than 0.2 eV.

To illustrate the unusual behaviors of the polarized exciton PL, it is perhaps
suitable to contrast it with the PL data of a more common exciton. Figure 4.22
shows excitation dependence of PL of Bi2Se3 in a more extended energy regime,
measured at about 15 K with 7 different excitations. We see that besides the highly
polarized exciton PL emission at about 2.3 eV, there is another (much stronger) PL
peak centered at about 1.5 eV, emitting with the same intensity of right- and left-CP
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Fig. 4.22 PL intensity
measured at about 15 K is
plotted against photon energy
for 7 different excitations.
The intensities are shown in
log scale. The light and dark
colored lines denote
IRL(ω, T ) and IRR(ω, T ),
respectively
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light, and it appears in all excitations. The line shape of this exciton is Lorentzian
(symmetric), which is in contrast to the highly asymmetric line shape of the CP
PL near 2.6 eV excitations. Figure 4.23 shows the excitation dependence of the
integrated PL intensity of the 1.52 eV exciton, which shows monotonic increase
of intensity with higher energy excitations. This is quite from the excitation profile
of the 2.26 eV CP PL in Fig. 4.21b, which shows clear resonance around 2.7 eV
excitation. The above comparisons show that the CP PL is unusual even within
Bi2Se3, and new theory is required to understand this phenomenon.

Temperature Dependence

Figure 4.24a shows temperature dependence of LR(ω, T ) for Bi2Se3 single crystal.
While the PL is much stronger at low temperature, the polarized emission is present
even at room temperature. Interestingly, we find that r(T ) remains about 0.1 up
to room temperature. This demonstrates that while temperature has effects on the
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Fig. 4.23 Excitation
dependence of the integrated
PL intensity of the 1.52 eV
exciton, plotted against
photon energy
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Fig. 4.24 Temperature dependence of CP PL measured with 2.6 eV right-CP excitation. (a) The
intensity of the polarized PL, LR(ω, T ), is plotted against photon energy for various temperatures.
(b) The temperature dependence of the FWHM of the polarized PL. (c) The temperature
dependence of the integrated intensity of the polarized PL,

∫
LR(ω, T ) dω

exciton lifetime and population, it has little impact on the polarization of the exciton
emission.

Another interesting anomaly of the observed exciton emission is its line shape.
Conventional phonon assisted exciton emission results in asymmetric broadening
toward the high energy tail, and the extent of the broadening is larger at elevated
temperatures [138], where both of them are in contrast to our observations in Bi2Se3.
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Fig. 4.25 LR(ω, T ) is
plotted against photon energy
for different Bi2Se3 samples,
measured with 2.6 eV
right-CP excitation at 26 K.
Spectra are shifted vertically
for clarity. Dashed line is a
guide to the eye indicating the
PL peak center of the bulk
Bi2Se3 single crystal
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Sample Dependence

Further experiments done on MBE grown Bi2Se3 thin films of different thickness
show qualitatively the same PL line shape, intensity and the depolarization ratio
r(T ) as in single crystals (Fig. 4.25). This shows that the observed polarization
preserving PL is indeed an intrinsic property of Bi2Se3.

The PL peak in bulk Bi1.95In0.05Se3 crystal shows slight broadening compared
to the pristine Bi2Se3 crystals, which could be due to increased inhomogeneity
level from indium substitution. The PL peaks in the superlattice samples show
lower energy compared to the bulk Bi2Se3, which could be due to changes of the
band structures in the thin samples. The superlattice samples also present slight
broadening, which could be due to increased inhomogeneity from indium diffusion
into the Bi2Se3 layers.

The fact that the polarized PL intensity is unaffected by Bi2Se3 thickness seems
to suggest a 3-dimensional (3D) nature of the exciton. However, the penetration
depth of Bi2Se3 around 2.6 eV is about 10 nm [34]. In the backscattering geometry,
the PL or scattered light intensity is again attenuated inside the crystal. The effective
penetration depth is then about 5 nm (5 QL), reaching the 2D limit of Bi2Se3 [15].
Therefore, the optical experiment in the visible range is effectively a surface probe
for Bi2Se3, and we cannot distinguish the surface from bulk contributions by
studying sample thickness dependence.
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Polarization Dependence

We plot in Fig.4.26 the PL spectra measured with different polarization geometries,
which helps to elucidate the nature of the observed PL in Bi2Se3. The polarized
PL with right-CP excitation (Fig. 4.26a) and left-CP excitation (Fig. 4.26b) show
the same line shape in the time reversed channels. This suggests that there exist
two degenerate exciton states, which can be excited by right- and left-CP light,
separately. The decaying process of these exciton preserves angular momentum
and therefore emits only PL in the same polarization as the excitation photon. For
symmetry reasons, we denote the degenerate exciton states as |ER

1 〉 and |EL
1 〉, which

couples to right- and left-CP light, respectively.
To test the quantum coherence between states |ER

1 〉 and |EL
1 〉, we excite

the sample with linearly polarized light. In Fig. 4.26c, IXR(ω, T ) and IXL(ω, T )

coincide with each other. This suggests that the linearly polarized excitation being
decomposed into right- and left-CP light can independently excite |ER

1 〉 and |EL
1 〉.
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Fig. 4.26 Polarization dependence of PL measured at 26 K, with 2.6 eV right-CP excitation.
(a) The thick and thin curves show the right- and left-handed PL spectra under right-CP and (b) left-
CP excitation. The black curve shows a featureless unpolarized broad background. Panels (c)–(e)
compare CP PL spectra excited with linearly polarized light. (f) Comparison of the spectra with
excitation polarization parallel and cross to the PL polarization
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The two types of excitons have independent but similar decay channels, such that the
emitted PL acquires the same line shape and intensity. Such process does not allow
any dependence on the orientation of the linearly polarized excitation, as linear light
can be decomposed into circular light up to a total phase difference. The above
argument is confirmed in Fig. 4.26d and e, where orthogonal linear light is used for
excitation. The resulted CP PL show roughly the same intensity and line shape for
both circular polarizations.

Moreover, the fact that IXL(ω, T ) coincides with [IRL(ω, T ) + ILL(ω, T )]/2
suggests that the quantum coherence is not preserved in the decay process of
the exciton (Fig. 4.26c). With linearly polarized light, both |ER

1 〉 and |EL
1 〉 are

simultaneously excited. The left-CP emission will therefore mainly come from
|EL

1 〉, with small proportion from depolarized emission of |ER
1 〉. If |EL

1 〉 and |ER
1 〉

are phase coherent, then due to interference, the combined PL intensity will not be
the same as the intensity obtained by individually exciting them, i.e., IXL(ω, T ) �=
[IRL(ω, T ) + ILL(ω, T )]/2. In our experiment, we have never observed such
interference phenomena.

This effect is particularly evident by exciting with the linearly polarized light
while also probing the linearly polarized PL. Figure 4.26f shows comparison
of spectra with the excitation polarization being parallel and cross to the PL
polarization. Apart from the overall intensity change, the PL peak is present in
both spectra with roughly the same strength. This is in contrast to the PL of valley
excitons in some TMD monolayers, where the PL polarization is always parallel to
the polarization of excitation photon [139], which is explained as a demonstration
of quantum phase coherence in the decaying channels of both types of valley
excitons. Here, the polarization dependence of PL in Bi2Se3 implies incoherent
decay processes. As a result, |EL

1 〉 and |ER
1 〉 act as independent but polarization

preserving emitters.

4.4.3 Chiral 2D Excitons

The observation of polarization preserving PL resonance can be readily understood
in terms of a 2D chiral exciton, i.e., an electron–hole bound state originating from
spin polarized surface states, as illustrated in Fig. 4.27. To explain how gapless Dirac
particles can result in a formation of a discrete two-particle bound state, we present
a model that involves an optically excited electron in SS2 and a hole state in RSS,
as shown in Fig. 4.19a. Neglecting the high order warping terms, we model the
Hamiltonians as

HSS2(p) = � + vp · σ e,

HRSS(p) = − p2

2mh

− αp · σ h, (4.15)
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Fig. 4.27 Illustration of the
chiral 2D excitons. The
doubly degenerate excitonic
states (|ER

1 〉 and |EL
1 〉) are

shown, where a Dirac
fermion from SS2, denoted in
red and green, orbits a
quasiparticle hole from RSS
(shown in black open circle),
with the spin polarization
denoted by blue arrows. The
exciton emissions from |ER

1 〉
and |EL

1 〉 are right- and
left-CP, respectively.
Interchange between these
two states requires
backscattering and spin flip
and therefore is not allowed

where � is the energy difference between RSS and SS2, v is the Dirac velocity,
mh is the effective mass of the hole, α is Rashba coefficient, and 2D momentum p
is measured from the 	 point. We note that Rashba spin-orbit interaction is of the
form α(σ h × p) · ẑ (similarly for the Dirac states with the substitution α → v and
σ h → σ e). However this structure is equivalent to that in Eq. (4.15) after relabeling
spin components as σx → σy , σy → −σx .

We model the non-interacting electron–hole pair by the two-body Hamiltonian
Heh(p) = HSS2(p+) − HRSS(p−), where p± = p ± 1

2k and k is the exciton
momentum. For zero momentum transfer (k = 0), the eigenvalues of Heh(p) have
W-shaped dispersion resembling a multi-layer Mexican hat (Fig. 4.20b). Crucially,
the two-body bands originating from Heh(p) are bounded from below for any
parameter values v and α due to the presence of the p2 term with mh > 0. We
therefore expect the two-particle bound state originating due to Coulomb attraction
between electron and hole to be a discrete state positioned below the Mexican hat
bottom layer band edge. This somewhat a counter-intuitive behavior, which arises
despite the Dirac conduction band being unbounded, is illustrated in Fig. 4.20b. As
we will see below, the characteristic momenta of this bound state are defined by the
Mexican hat rim radius.
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Excitonic Bound States

The formation of a discrete bound state may seem to be at odds with the fact that
the energy spectrum of massless Dirac fermions spans the entire continuum −∞ <

ε < ∞, leaving no room for discrete states at any energy. The only known exception
to this picture are the discrete complex-energy states arising in the so-called atomic
collapse regime [140]. Here, in contrast, we predict bound states with discrete real-
valued energies. Such states arise because an electron in the conduction band can
bind to a hole in the valence band such that the electron and the hole are moving with
roughly the same velocity, ve(p) = vh(p). In this case the (possibly large) kinetic
energies of the electron and the hole have no impact on the formation of the bound
state. The condition ve(p) = vh(p) defines the Mexican hat bottom, in agreement
with the discussion above. As we will see, if the condition ve(p) = vh(p) is fulfilled
on a circle in momentum space, the bound states can arise even for an arbitrarily
weak attraction potential.

The quantum state and the binding energy of this chiral 2D exciton can be
obtained with the help of the two-particle Schrödinger equation:

εψeh(r) = (Heh(p) + V (r)) ψeh(r), (4.16)

where V (r) is the electron–hole interaction potential. Here, ψeh(r) describes the
exciton wave function, and for the sake of simplicity, we focus on the case of zero
net exciton momentum (k = 0), which is sufficient for the direct optical transitions
discussed here.

To understand the general properties of the resulting discrete states, in particular
their spin structure, it is instructive to replace the interaction potential by a model
short-range attraction V (r) = −λδ(r), which in fact provides a good approximation
for the Coulomb interaction screened by conduction electrons in Bi2Se3. The bound
states for this problem can be readily obtained using the T-matrix approach, giving
an equation for eigen-energies of the form:

1 = λZ(ε,k), (4.17)

Z(ε,k) = −
∑

p

1

ε − � − p2+
2mh

− vp+ · σ e − αp− · σ h + i0
,

where
∑

p denotes integration
∫ d2p

(2πh̄)2 . Equation (4.17) can be evaluated explicitly,
giving a closed-form algebraic equation for exciton spectrum. In the Supplementary
Materials of [3], we show that the discrete states exist for any attraction strength
λ > 0, no matter how weak.

At k = 0, Heh(p) possesses azimuthal symmetry, allowing us to understand
the spin structure of Eq. (4.17) on general symmetry grounds. The eigenstates
must have definite projection of the angular momenta z component, σz

e = ±1
and σz

h = ±1. Strictly speaking, exciton states have to be classified within the



140 4 Secondary Emission in Bi2Se3

surface symmetry group, which is C6v for actual Bi2Se3 or C∞v for a rotationally
invariant Hamiltonian. At 	 point, both RSS and SS2 transform as the 	7 double
group representation of the C6v point group. Extending the symmetry argument to
states near the 	 point, the 2D exciton states arising from Eq. (4.17) must have the
symmetries [53]: 	7 × 	7 = 	1 + 	2 + 	5, or equivalently in Mulliken symbols:
A1 + A2 + E1.

Inspecting the exciton wave functions, we find that the two |Jz = 0〉 states are
fully symmetric with respect to all symmetry operators of both C6v and C∞v

groups and therefore belong to the A1 irreducible representation. On the contrary,
the doubly degenerate |Jz = ±1〉 states belong to the E1 representation, which
transform as an in-plane electric dipole. Here, neither the orbital angular momentum
nor the spin is a good quantum number, and the states should be labeled by the
total angular momentum. The lowest energy state with Jz = 0 takes the form:
|A1

1〉 = 1√
2
( | ↑e↓h〉 − | ↓e↑h〉). The excited state with the Jz = 0 component

has the form: |A2
1〉 = 1√

2
( | ↑e↓h〉 + | ↓e↑h〉). The A1 representation transforms

as an electric dipole along c-axis, and therefore |A1〉 is optically active only when
excited from the ac surface.

In contrast, the states with Jz = ±1 have the E1 symmetry, which transforms
as in-plane electric dipoles and therefore couples to the circularly polarized light in
backscattering geometry from the ab surface. Hence, we label the Jz = ±1 states
as |ER

1 〉 = | ↑e↑h〉 and |EL
1 〉 = | ↓e↓h〉, populated by right- and left-CP light,

respectively. It can be shown that these two states are degenerate and intermediate
to the energies of the |Jz = 0〉 states, as we illustrated in Fig. 4.20b. Crucially, only
the |ER

1 〉 and |EL
1 〉 are optically active, whereas both |A1

1〉 and |A2
1〉 are “invisible” in

our experiment. This possibly explains the unusual line shape of exciton resonance
with a pronounce tail on the long wavelength side, which can be due to emission
from a “dark” state through high order terms beyond dipole approximation.

Optical Orientation of Chiral 2D Excitons

The polarization preserving PL arises as a direct result of the symmetry properties of
the constructed 2D excitons. Within the backscattering geometry of our experiment,
circularly polarized light can only promote excitations with �Jz = ±1. Assuming
no cross-relaxation between Jz = 0 and Jz = ±1 states, we expect a single PL
peak arising from recombination of the Jz = ±1 exciton, which is consistent
with our data. However, one would expect that inelastic scattering with phonons
would couple the |Jz = +1〉 and |Jz = −1〉 states, which could cause an increase of
r(T ) with increasing incident photon energy. In Fig. 4.22, we see only a moderate
increase of r(T ) even if the incident photon energy is about 300 meV above the
Mexican hat minimum (Fig. 4.20). This is because the interchange between the two
states involves spin–flip as illustrated in Fig. 4.27 and therefore is unfavored for
interaction with nonmagnetic impurities or full symmetric phonons.
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We knew from the previous Sect. 4.2 that nonsymmetric surface phonons
in Bi2Se3 are weak, and hence Jz remains approximately conserved during the
energy relaxation. Hence this explains the exceptionally high degree of polarization
observed in all samples and up to room temperature. It would be interesting to
study in the future the interaction between the chiral exciton and other asymmetric
collective modes, such as the Dirac plasmons and chiral spin modes, which might
be the main relaxation channels for the chiral excitons.

4.5 Summary

In summary, we have studied the secondary emissions in the 3D TI Bi2Se3 single
crystal and thin films, in the energy range of 0.5 meV to 1.5 eV. Within this
energy regime, we have observed three surface originated phenomena, which is a
particularly interesting topic in this material (Sect. 4.1.2).

Below 50 meV, the spectra is dominated by Raman scattering from lattice
vibration normal modes (phonons, second-order phonons, etc.). Compared to the
DFT calculated bulk phonon bands, we observed in total four additional out-of-
plane and possibly 2 in-plane surface vibrational modes, where we tabulate the
energies and symmetries in Table 4.3. These modes all have energies very close
to the bulk values where the bulk phonon DOS is not zero, and therefore they were
assigned to surface resonances. Thanks to the high energy resolution and sensitivity,
we were able to resolve an additional A

(4)
1 mode that has not been previously

observed. This completes all of the possible surface resonances that can be observed
in Bi2Se3, and a proper symmetry analysis has been given.

Above 100 meV, the Raman spectra is basically flat with little signal, except
for a new collective mode at 150 meV in the chiral A2 symmetry channel of C6v

group. This mode is only observed under surface resonance energy of 1.8 eV and
is identified as transverse chiral spin mode: a collective spin-flip excitation of the
surface Dirac fermions. The high energy secondary emission spectra are overlapped
with two PL peaks at about 1.5 and 2.3 eV. The 2.3 eV peak is almost fully circularly
polarized parallel to the polarization of the excitation photon. We propose a 2D
excitonic model where two energetically degenerate electron–hole bound states
form on the surface of Bi2Se3.

The results we presented here demonstrate a way of studying the dynamical
response of Dirac fermions and their many-body interactions through optical mea-
surement. In the future, experiments should be done on the excitation dependence
of the surface resonances, which might further reveal the relation between phononic
and electronic degrees of freedom on the surface of TIs. In addition, the magnetic
field dependence of the chiral spin mode and exciton would help understand the
spin–spin correlations in TIs. Due to the particular interests this material has in
spintronics, magnonics, optoelectronics, and quantum computing [129, 130, 141–
147], our results may have important applications beyond scientific curiosities.
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Chapter 5
Conclusion

Abstract In this monograph, we used Raman scattering to identify collective exci-
tations in the “chiral” symmetry channel in two completely different nonmagnetic
systems: the HO phase of heavy fermion metal URu2Si2 and the surface states of
3D topological insulator Bi2Se3.

In URu2Si2, the collective mode arises from the uranium 5f electrons orbital
degrees of freedom, crystal field states. However, due to the partly localized and
itinerant characters of uranium electrons, the crystal field excitations in URu2Si2
are overdamped and difficult to observe experimentally, as in many other uranium
compounds. Indeed, due to Kondo hybridization with the conduction band electrons,
the local crystal field picture often fails to explain the low temperature phases in
heavy electron materials. However, the “arrested Kondo effect” in URu2Si2 is a
special case where the local degrees of freedom reemerge and become important
at low temperature [1]. The spontaneous symmetry breaking results the system
in a chiral ground state, where the 5f electron orbital states reorganize and order
in real space to form a “chirality density wave” [1, 2]. One of the contributions
in this monograph is to identify a collective mode out of this ground state and
how it evolves across the temperature-doping phase diagram [3]. Both temperature
and doping evolution of this mode match the low temperature phase diagram of
URu2Si2, and the mode energy is fully consistent with the Ginzburg–Landau model
by Haule and Kotliar [3–6]. The mode observed in Raman scattering of URu2Si2
appears only below the phase transition, which is very different from usual crystal
field transitions that are already observable above the phase transition, and the
linewidth gradually sharpen at low temperature due to reduced relaxation channels.
The particular symmetry dependence of this collective mode allows us to identify
the symmetry breaking in the HO phase, which strongly constraints the allowed
order parameters for the HO phase. Thus, we demonstrate the unique property of
Raman spectroscopy in determining the symmetry of collective modes, which is
very useful when studying symmetry breaking and phase transitions in solids.

In Bi2Se3, the “stage setting” is very different than in URu2Si2. Here we do not
have any f -orbitals or localized states at the Fermi level to worry about. But instead,
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the strong SOC on the crystal surface collaborates with time reversal symmetry to
produce a pair of 2D surface Dirac cones at Fermi energy around Γ point. The
Dirac electrons possess a chiral spin texture, which has intrigued many studies
in the recent years [7–10]. While the spin polarization and surface band structure
have been well established, the spin correlation between the Dirac fermions is
actually very little known. The main contribution in this monograph is to use Raman
scattering to identify a mode in the chiral symmetry channel, which corresponds to
the collective “spin-flip” excitation out of the surface’s chiral ground state [11].
This mode is known as a “chiral spin mode” and is in fact generic to many systems
with strong SOC [12, 13]. However, it has never been so cleanly observed in zero
field at such high temperature and also never been observed from the surface states
of a 3D TI. A chiral spin mode is similar to a magnetic bound state, which peels
off from the “spin-flip” transition continuum due to finite interaction, and thus is
a fantastic tool to measure the spin correlation between Dirac fermions. In order
to selectively enhance the signal from the surface, we tune the excitation energy
to resonantly promote interband transitions into unoccupied surface states. This
innovative surface selective resonant Raman scattering paves new ways of studying
the surface states in Bi2Se3 using optical methods [11].

We hope that the work presented in this thesis would inspire future studies in
the condensed matter physics community, introducing polarization resolved Raman
spectroscopy as a powerful tool to characterize the collective modes in solids. In
particular, the sensitivity in the fully antisymmetric channel presents a unique tool
to study chiral excitations in a wide range of systems. Besides materials with time
reversal symmetry breaking, we argue that antisymmetric Raman excitations could
be expected whenever reflection symmetries are broken or if the ground state has
a chiral spin texture. These properties encompass a large group of materials that
are interesting to the current research, and we believe the studies we present in this
thesis would be a useful starting point for future researchers.
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